No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aman Sharma 6 years, 10 months ago

Which
  • 7 answers

Aman Sharma 6 years, 10 months ago

2πR

Google User 6 years, 10 months ago

2π r

Priya Darshni 6 years, 10 months ago

2 pi r only correct pi r square is the area of circle

Kiran Gill 6 years, 10 months ago

2 pie r

Priya Darshni 6 years, 10 months ago

I don't know how to type pie symbol

Angle Angle 6 years, 10 months ago

Pi r square

Priya Darshni 6 years, 10 months ago

2 pie r
  • 2 answers

Kiran Gill 6 years, 10 months ago

d=-4 , a7=4 a+6d=4 a+6(-4)=4 a=28

Priyanka Bisht0803 6 years, 10 months ago

Given 7th term of ap = 4 Common difference= -4 If n =7 an = a+(n-1)d 4=a+(4-1)-4 4=a+3*-4 4=a-12 4+12= a 16=a
  • 1 answers

Arya Dewangan 6 years, 10 months ago

Conical cavity means a conical hole or cave
  • 1 answers

Arpan Sinha 6 years, 10 months ago

please see byjus application for this it is told very nice there
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Given: In figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B.
To Prove : {tex}\angle{/tex}AOB = 90o
Construction: Join OC

Proof: {tex}\angle{/tex}OPA = 90o ........ (i)
{tex}\angle{/tex}OCA = 90o........ (ii)
[Tangent at any point of a    circle is ⊥ to  the radius through the point of contact]
In right angled triangles OPA and OCA,
OA = OA [Common]
AP = AC [Tangents from an external
point to a circle are equal]
{tex}\therefore{/tex} {tex}\triangle{/tex}OPA {tex}\cong{/tex} {tex}\triangle{/tex}OCA [RHS congruence criterion]
{tex}\therefore{/tex} {tex}\angle{/tex}OAP = {tex}\angle{/tex}OAC [By C.P.C.T.]
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OAC = {tex}\frac12{/tex}{tex}\angle{/tex}PAB ....... (iii)
Similarly, {tex}\angle{/tex}OBQ = {tex}\angle{/tex}OBC
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OBC = {tex}\frac12{/tex}{tex}\angle{/tex}QBA  .......... (iv)
{tex}\because{/tex} XY ∥ X'Y' and a transversal AB intersects them.
{tex}\therefore{/tex} {tex}\angle{/tex}PAB + {tex}\angle{/tex}QBA = 180o [Sum of the consecutive interior angles on the same side
of the transversal is 180o
{tex}\Rightarrow{/tex} {tex}\frac12{/tex}{tex}\angle{/tex}PAB + {tex}\frac12{/tex}{tex}\angle{/tex}QBA = {tex}\frac12{/tex}{tex}\times{/tex} 180o.......... (v)
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OAC + {tex}\angle{/tex}OBC = 90o [From eq. (iii) & (iv)]
In {tex}\triangle{/tex}AOB,
{tex}\angle{/tex}OAC + {tex}\angle{/tex}OBC + {tex}\angle{/tex}AOB = 180o [Angel sum property of a triangle]
{tex}\Rightarrow{/tex} 90o + {tex}\angle{/tex}AOB = 180o [From eq. (v)]

  • 2 answers

Aman Sharma 6 years, 10 months ago

That's sin square A + cos square A is equals to 1

Parneet Kaur 6 years, 10 months ago

1 maybe
  • 0 answers
  • 4 answers

Esha Pal 6 years, 10 months ago

1

Priyanka Bisht0803 6 years, 10 months ago

1+cot^2theta =cosec^2theta 1=cosec^2theta - cot^2theta So the value is 1

Ship.. ??? 6 years, 10 months ago

1

Ashok Kumar 6 years, 10 months ago

Minus1
  • 3 answers

Aman Sharma 6 years, 10 months ago

Composite numbers are the numbers which has the factor other than 1 and itself

Aliya Qureshi 6 years, 10 months ago

Composite numbers are the numbers having more than two factors..... Ex. 4, 6, 8, 9 etc...

Mayank ... 6 years, 10 months ago

The number having more tha 2 factors are called composite no.
  • 2 answers

Priyanka Bisht0803 6 years, 10 months ago

If x-3=0 X=3 Then 2kx-6=0 2k(3)-6=0 6k-6=0 6k=6 K=6/6 K=1

Payanthamil Sakthi 6 years, 10 months ago

K=0
  • 3 answers

Aman Sharma 6 years, 10 months ago

1.04

Esha Pal 6 years, 10 months ago

1.41

Prabhat Hntr 6 years, 10 months ago

1/2
  • 1 answers

Sia ? 6 years, 4 months ago

Length of wallpaper =312 m,

Breadth of wallpaper=25 cm =0.25 m

Area of wallpaper = 312 {tex}\times{/tex} 0.25 = 78.00 m2
Length of room = 7 m
Let height be x m, then it's  breadth is 2x m
Surface area of four walls = 2 [lh + bh]
= 2 (7x + 2x2)
= 14x + 4x2
According to the question

Surface area of four walls= Area of wallpaper
4x2 + 14x = 78 {tex}\Rightarrow{/tex} 2x2 + 7x - 39 = 0
{tex}\Rightarrow{/tex} 2x2 + 13x - 6x - 39 = 0
{tex}\Rightarrow{/tex} x(2x + 13) - 3 (2x + 13) = 0
{tex}\Rightarrow{/tex}(x - 3) (2x + 13) = 0
{tex}\Rightarrow{/tex} x - 3 = 0 or 2x + 13 = 0
{tex}\Rightarrow{/tex} x = 3 or x = -{tex}\frac{13}{2}{/tex}(rejected) {tex}\Rightarrow{/tex} x = 3 m
Hence, height of the room is 3 m.

  • 1 answers

Siddharth Singh 6 years, 10 months ago

It depends upon our preparation.
  • 1 answers

Sia ? 6 years, 4 months ago

Let radius of cylinder = Radius of cone = r cm
And, height of cylinder = Height of cone = h cm
Given, {tex}\frac { \text { Curved surface area of cylinder } } { \text { Curved surface area of cone } } = \frac { 8 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac { 2 \pi r h } { \pi rl } = \frac { 8 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac { 2 h } { l} = \frac { 8 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac {h } {l } = \frac { 4 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { l ^ { 2 } } = \frac { 16 } { 25 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { r ^ { 2 } + h ^ { 2 } } = \frac { 16 } { 25 }{/tex} [for a cone l= r+ h2]
{tex}\Rightarrow{/tex} 25h= 16r2 + 16h2
{tex}\Rightarrow{/tex} 9h2 = 16r2
{tex}\Rightarrow \quad \frac { 9 } { 16 } = \frac { r ^ { 2 } } { h ^ { 2 } }{/tex}
{tex}\Rightarrow \quad \frac { r } { h } = \frac { 3 } { 4 }{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

 {tex}{/tex}Given: {tex}\Delta{/tex}ABC in which MX {tex}\|{/tex} AB and NX{tex}\|{/tex}AC. MN meets BC produced at T.

To prove: TX= TB {tex}\times{/tex} TC
Proof: In {tex}\Delta MTX ,{/tex}
{tex} X M \| B N{/tex} {given}
{tex} \therefore \quad \frac { T B } { T X } = \frac { T N } { T M }{/tex} ...............(i) [by basic proportionality theorem]
In {tex} \Delta{/tex} TMC, we have
{tex} X N \| C M{/tex}{ given}
{tex} \therefore \quad \frac { T X } { T C } = \frac { T N } { T M }{/tex} ..............(ii) [by basic proportionality theorem]
From equations (i) and (ii), we get,
{tex}\Rightarrow{/tex}{tex} \frac { T B } { T X } = \frac { T X } { T C }{/tex}
{tex} \Rightarrow \quad T X ^ { 2 } = T B \times T C{/tex}
Hence proved.

  • 1 answers

Raman Kethoriya 6 years, 10 months ago

By using the formula= N/2 for even term of n or N+1/2 for odd term of N
  • 0 answers
  • 5 answers

Free Fire 4 years, 9 months ago

15/2=8+p/2

Affu 😊 6 years, 10 months ago

-1

Saloni Pant 6 years, 10 months ago

P=-2

Ship.. ??? 5 years, 8 months ago

P=7

Yograj Bisht 6 years, 10 months ago

-1
  • 0 answers
  • 1 answers

Mayank Joshi 6 years, 10 months ago

Refer to your ncert book pg 124 theorem 6.1
  • 1 answers

Mayank Joshi 6 years, 10 months ago

Draw a diagonal joining opp vertices of square, Area design=2(area quadrant - area triangle.)
  • 1 answers

Sia ? 6 years, 4 months ago

Height of tower = 100 m
Let height of rock = h m = CD
Let distance between them = xm = AC
Using {tex}\triangle {/tex} ACD,{tex}\frac{x}{h} = \cot {45^ \circ }{/tex} 
{tex}\Rightarrow {/tex} {tex}\frac{x}{h} = 1 \Rightarrow x = h{/tex}.........(i)
In
{tex}\triangle {/tex} BED,{tex}\frac{x}{{h - 100}} = \cot {30^ \circ }{/tex}  (since DE = DC - EC)
= DC - AB
= (h-100m)

{tex}\Rightarrow {/tex} {tex}\frac{x}{{h - 100}} = \sqrt 3 {/tex}
x = {tex}\sqrt 3 h - 100\sqrt 3 {/tex}
From (i) and (ii), we get

{tex}\sqrt 3 h - 100\sqrt 3 = h{/tex}
{tex}\Rightarrow {/tex} {tex}\sqrt 3 h - h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}\left( {\sqrt 3 - 1} \right)h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}h = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}}{/tex}
= {tex}\frac{{300 + 100\sqrt 3 }}{{3 - 1}} = \frac{{300 + 100 \times 1.73}}{2}{/tex}
h = {tex}\frac{{300 + 173}}{2} = \frac{{473}}{2} = 236.5\,m{/tex}
Hence, the height of rock is 236.5 m.

  • 1 answers

Kiara D'Cruz 6 years, 10 months ago

Apply Pythagoras theorem in OPT&PRT and subract the equations u will get ur answer
  • 2 answers

Esha Pal 6 years, 10 months ago

For hcf - the words greatest or maximum are used and for lcm least and minimum words are used

Aliya Qureshi 6 years, 10 months ago

Whenever in the question if something has to be divided into rows or colums that means we have to find the HCF...... And if in the question their is given that two object have started from a position with different speeds and we have to find the least time when they both will meet again so in this case we have to find LCM...

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App