No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Chhaya Gond 6 years, 10 months ago

-600x

Anurag Gupta 6 years, 10 months ago

-600x

Sejal Barge 6 years, 10 months ago

700x
  • 2 answers

Ashwini Ramteke 6 years, 10 months ago

vaishika I think Answer is 48

Ram Kushwah 6 years, 10 months ago

96=25 x 3

240=24x3x5

336=24x3x7

HCF=24x3=16x3=48

  • 1 answers

Shriyasha Khandige 6 years, 10 months ago

2 and 2/3
  • 1 answers

Shubhi Tyagi 6 years, 10 months ago

LHS : = CotA-1+cosecA/CotA+1-CosecA. (Divide the both the value by "SinA") = CotA+CosecA-(Cosec^2A-Cot^2A) / CotA-CosecA+1. (1=cosec^2A-cot^2A) = (CotA+CosecA)-(cosec^2A+cot^2A)/CotA-CosecA+1 = (CotA+CosecA)-(CosecA+CotA)(CosecA-CotA) = CotA+CosecA-(CotA-CosecA+1)/CotA-CosecA+1 = CotA+CosecA PROVED!!!! Its a question NCERT EX-8.4 Q5 (v) part...
  • 2 answers

Aman Sharma 6 years, 10 months ago

Thanks

Ram Kushwah 6 years, 10 months ago

3x2-kx+3=0

a=3,b=-k,c=3

b2-4ac=(-k)2-4x(3)(3)

=k2-36

For not having real roots

b2-4ac<0

so k2-36<0

k< 36

k < 6 

or k > -6

 

  • 2 answers

Shubhi Tyagi 6 years, 10 months ago

For this question you have to change the location of LHS and RHS..... LHS: = 1/(CosecA-CotA) - 1/(cosecA+CotA) =CosecA+CotA+CosecA-CotA/Cosec^2A - Cot^2A =2cosecA RHS: =1/sinA + 1/sinA =2/sinA =2CosecA Proved!!!!

Yuvraj Verma 5 years, 8 months ago

1
  • 1 answers

Mehak Rathore 6 years, 10 months ago

Point where all angle bisectors meet within a triangle
  • 1 answers

Ram Kushwah 6 years, 10 months ago

Given ratio of sum of n terms of two AP’s = (7n+1):(4n+27)....(1)
Let’s consider the ratio these two AP’s mth terms as am : a’m →(2)
The nth term of AP formula, an = a + (n – 1)d
Hence equation (2) becomes,
am : a’m =[ a + (m – 1)d] :[ a’ + (m – 1)d’]
On multiplying by 2, we get
am : a’m = [2a + 2(m – 1)d] : [2a’ + 2(m – 1)d’]
= [2a + {(2m – 1) – 1}d] : [2a’ + {(2m – 1) – 1}d’]
= S2m – 1 : S’2m – 1
= [7(2m – 1) + 1] : [4(2m – 1) +27]    [from (1)]
= [14m – 7 +1] : [8m – 4 + 27]
= [14m – 6] : [8m + 23]
Thus the ratio of mth terms of two AP’s is {tex}\frac{14m-6}{8m+23}{/tex}

  • 0 answers
  • 2 answers

Anurag Gupta 6 years, 10 months ago

3 places of decimal 120=2*2*2*3*5 147*3/2*2*2*3*5 Now, 147/2*2*2*5 147*5*5/2*2*2*5*5*5 147*25/2³*5³ 3675/(2*5)³ 3675/1000 3.675

Mayank ... 6 years, 10 months ago

Convert it into the form of 5^m ×2^n.. You will get the answer
  • 4 answers

Aman Sharma 6 years, 10 months ago

Prepare well, do well and other leave on teachers on teachers, it will be really easy.

Ayushi Jain 6 years, 10 months ago

Don't know...

Mayank ... 6 years, 10 months ago

No...

Aanchal Sharma 6 years, 10 months ago

Yes it will very difficult
  • 3 answers

Ashwini Ramteke 6 years, 10 months ago

by cbse rule you should carry only Blue/Royal blue ball point/Gel and fountain pens only you can use

Affu 😊 6 years, 10 months ago

No harsh ....only blue pen use in exam ,this is written in admit card

Sammy'S K 6 years, 10 months ago

Please
  • 0 answers
  • 1 answers

Mayank ... 6 years, 10 months ago

Where is the question..??
  • 1 answers

Sia ? 6 years, 4 months ago

Given: ABC is an isosceles triangle right angled at C.

To prove: AB2 = 2AC2
Proof : ABC is an isosceles triangle right angle at C.
{tex}\therefore {/tex} AC = BC........(1)
and {tex}\angle{/tex}C = 90o.......(2)
In view of (2) in
{tex}\vartriangle {/tex} ABC,
AB2 = AC2 + BC2........By Pythagoras theorem.
AC2 + AC2  ........Frrom(1)
= 2Ac2

  • 1 answers

Aman Sharma 6 years, 10 months ago

This is the question of first exercise of 1st chapter in NCERT
  • 0 answers
  • 1 answers

Thanks Ki Baarish ........???? 6 years, 10 months ago

Yes
  • 1 answers

Aliya Qureshi 6 years, 10 months ago

Here, a = a - 3d.............. d = a - 2d - ( a - 3d)........... d = a - 2d - a + 3d........... d = 1d...
  • 1 answers

Aliya Qureshi 6 years, 10 months ago

A quadrant is just one forth part of a circle...... Whenever we need to find area of a quadrant it is the same as that of the sector having theta 90°.......... According to question, Circumference = 22units...... 2 × 22/7 × r = 22........... r = 7/2units....... Area of quadrant = theta/ 360° × 22/7 × r^2........... = 90°/360° × 22/7 × 7/2 × 7/2......... = 77/8.......... = 9.62 units^2
  • 1 answers

Gauri ❤ 6 years, 10 months ago

A solide ye kya hai
  • 1 answers

Google User 6 years, 10 months ago

m2+n2=(acos+bcos)^2+(asin-bcos)^2 =a2cos2+a2sin2+2absincos+a2sin2+b2cos2 - 2absincos =a2(cos2+sin2)+b2(cos2+sin2) =a2(1)+b2(1) =a2+b2
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Given,

Let the height of the tower be h cm.
Now, In {tex}\triangle{/tex}PAB, 
{tex}\tan 60^{\circ}=\frac{A P}{A B}{/tex}
{tex}\Rightarrow \sqrt{3}=\frac{h}{A B}{/tex}
{tex}\Rightarrow A B=\frac{h}{\sqrt{3}}{/tex} .....(i)
And, In {tex}\triangle{/tex}PCD,
{tex}\tan 30^{\circ}=\frac{P D}{C D}{/tex}
{tex}\Rightarrow \frac{1}{\sqrt{3}}=\frac{h-10}{C D}{/tex}
{tex}\Rightarrow{/tex} CD = {tex}\sqrt{3}(h-10){/tex} ...(ii)
Since, AB = CD, so equation (ii) becomes, 
{tex}A B=\sqrt{3}(h-10){/tex} ....(iii)
Equating equation (i) and (iii), we get,
{tex}\frac{h}{\sqrt{3}}=\sqrt{3}(h-10){/tex}
{tex}\Rightarrow h=3(h-10){/tex}
{tex}\Rightarrow{/tex} {tex}2h = 30 {/tex}
{tex}\Rightarrow{/tex} {tex}h = 15 cm{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App