No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Roli Gupta 6 years, 8 months ago

Because they have more that two factors
  • 1 answers

Sia ? 6 years, 7 months ago

Numbers are of two types - prime and composite.
Prime numbers can be divided by 1 and only itself, whereas composite numbers have factors other than 1 and itself.
It can be observed that
7 × 11 × 13 + 13 = 13 × (7 × 11 + 1)
= 13 × (77 + 1)= 13 × 78= 13 ×13 × 6
The given expression has 6 and 13 as its factors.
Therefore, it is a composite number.
7 × 6 × 5 × 4 × 3 × 2 × 1 + 5
= 5 ×(7 × 6 × 4 × 3 × 2 × 1 + 1)
= 5 × (1008 + 1)= 5 ×1009
1009 cannot be factorized further
Therefore, the given expression has 5 and 1009 as its factors.
Hence, it is a composite number.

  • 1 answers

Rishabh Kasodhan 6 years, 8 months ago

L.c.m of( 12,15,21)= 2×3×2×5×7 = 6×10×7 =420 l.c.m H.c.f =3
  • 1 answers

Pravjyot Singh 6 years, 8 months ago

4usquare + 8u =4u(u+2) U=0 and also u =-2 So the zeroes are o and -2 Case 1... (a+b)=0+(-2) = -(-8)/4 =(-b/a) -2 = 8/4 Case 2... (a*b) = (0)(-2) = 0/4= (c/a) 0=0/4 Hence verified... Hope sooo ...it would help u..?
  • 2 answers

Prashant Chaudhary 6 years, 8 months ago

Bass practice Karo Bhai aap

Pravjyot Singh 6 years, 8 months ago

Do practice on daily basis
  • 1 answers

Sia ? 6 years, 7 months ago

Let digit at ten's place = x and digit at unit's place = y
{tex}\therefore{/tex} number = {tex}10x + y{/tex}
A.T.Q  {tex} x + y = 15{/tex}...(i)
Also {tex}10y + x = 10x + y + 9{/tex}
{tex}\Rightarrow{/tex}{tex}9y - 9x = 9{/tex}
{tex}y - x = 1{/tex}...(ii)
Table for {tex} x + y = 15 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
0 15 7
15 0 8

Table for {tex}y - x = 1 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
0 -1 2
1 0 3


From graph x = 7, y= 8
{tex}\therefore{/tex} Number 10x + y = 10 {tex}\times{/tex}7 + 8 = 78

  • 1 answers

Sia ? 6 years, 7 months ago

The given equations are
4x + {tex}\frac{6}{y}{/tex} = 15 .......... (i)
6x - {tex}\frac{8}{y}{/tex} = 14 ......... (ii)
Multiply (i) by 3 and (ii) by 2 , we get
12x + {tex}\frac{18}{y}{/tex} = 45 ............(iii)
12x - {tex}\frac{16}{y}{/tex} = 28  ............(iv)
Subtracting (iii) and (iv), we get

{tex}\Rightarrow{/tex} 2 = y

Put y = 2 in (i) , we get
4x + {tex}\frac{6}{2}{/tex} = 15
{tex}\Rightarrow{/tex}4x = 15 -3
{tex}\Rightarrow{/tex} 4x =12
 {tex}\Rightarrow{/tex} x = {tex}\frac{12}{4}{/tex} = 3
Hence x = 3 and y = 2 is the solution of given system of equations.

  • 1 answers

Sia ? 6 years, 7 months ago

Get NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 1 answers

Sia ? 6 years, 7 months ago

Let n be any positive integer.
By Euclid's division lemma, n = 5q + r, 0{tex}\leqslant{/tex}r < 5
n = 5q,5q + 1,5q + 2 ,5q 4- 3 or 5q + 4, where q{tex}\in \omega{/tex}
Now we find the square of n
If  n=5q then (5q)2 = 25q2= 5(5q2) = 5m
If n=5q+1then n2= (5q + 1 )2 = 25q2 + 10q + 1 = 5m + 1
If n=5q+2 then n​​​​​​2 = (5q + 2)2 = 25q2 + 20q + 4 = 5m + 4
If n=5q+4 then n​​​​​​2​​​​​=(5q + 3)2=25q2+30q+9=5m + 1
Thus square of any positive integer is in the form of 5m,5m+1 or 5m+4, hence cannot be of the form 5m + 2 or 5m + 3.

  • 1 answers

Puspendu Shekhar Panda 6 years, 8 months ago

1445=1190*1+255 1190=255*4+170 255=170*1+85 170=85*2+0 Hence 85 is the HCF
  • 0 answers
  • 5 answers

Khushi Singh 6 years, 8 months ago

R d sharma nhi

Lakshya Pratap Singh 6 years, 8 months ago

Exempler

Puhpalata Srivastava 6 years, 8 months ago

Rs

Kunal Jadhav 6 years, 8 months ago

Ncert exampler

Dollsi Jain 6 years, 8 months ago

Rs
  • 1 answers

Sia ? 6 years, 4 months ago

 x = 0, y = 0, y = 4 and 2x + y = 6 
Graph of the equation y = 4:

{tex}2x + y = 6{/tex}:
We have {tex}2x + y = 6{/tex}
When y = 0, we get x = 3 and x = 0 gives y = 6.
Thus, we obtain the following table giving coordinates of two points on the line represented by the equation {tex}2x + y = 6{/tex}.

x 3 0
y 0 6

The coordinates of its vertices are {tex}O (0,0), C (3,0), E (1,4)\ and\ B (0,4).{/tex}
Area of trapezium {tex}\operatorname { OCEB } = \frac { 1 } { 2 } ( O C + B E ) \times O B = \frac { 1 } { 2 } ( 3 + 1 ) \times 4 = 8 \mathrm { sq } . units{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

Get NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 1 answers

Sia ? 6 years, 7 months ago

Get NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 0 answers
  • 3 answers

Prachi Janwani 6 years, 8 months ago

Sorry,the value of x is (1+5y)÷6 not 3

Prachi Janwani 6 years, 8 months ago

Taking equation 1 6x-5y=1 Here x=(1+5y)÷3 Put the value of x in equation 2, 2x+3y=5 2[(1+5y)÷6]+3y=5 (1+5y)÷3+3y=5 5y÷3+3y=5-1÷3 (5y+9y)÷3=(15-1)÷3 14y=14 Therefore,y=1 Now,put the value of y in equation 1 6x-5(1)=1 6x-5=1 6x=1+5 6x=6 Therefore,x=1 The answer is X=1 and Y=1

Lakshya Pratap Singh 6 years, 8 months ago

x=1, y=1.
  • 1 answers

Yogita Ingle 6 years, 8 months ago

Given √2 is irrational number.
Let √2 = a / b wher a,b are integers b ≠ 0
we also suppose that a / b is written in the simplest form
Now √2 = a / b ⇒ 2 = a2 / b2 ⇒   2b2 = a2
∴ 2b2 is divisible by 2
⇒  a2 is divisible by 2    
⇒  a is divisible by 2  
∴ let a = 2c
a2 = 4c2 ⇒ 2b2 = 4c2 ⇒ b2 = 2c2
∴ 2c2  is divisible by 2
∴ b2  is divisible by 2
∴ b  is divisible by 2
∴a are b   are  divisible by 2 .
this contradicts our supposition that a/b is written in the simplest form
Hence our supposition is wrong
∴ √2 is irrational number.

  • 4 answers

Aïshrëët ? 6 years, 8 months ago

Bhai...ask this in kg section

Lakshya Pratap Singh 6 years, 8 months ago

Of course 6

Simran Das 6 years, 8 months ago

6

Manish Tanwar 6 years, 8 months ago

6
  • 1 answers

Megha Singh 6 years, 8 months ago

0°=1 , 30°=1/√3 , 45°=1/√2 , 60°=1/2 , 90°=0
  • 1 answers

Lakshya Pratap Singh 6 years, 8 months ago

www. cbse. nic. in
  • 1 answers

Prachi Janwani 6 years, 8 months ago

Sorry, I think the question is wrong
  • 1 answers

Sia ? 6 years, 7 months ago

We do not know whether {tex} \frac { a } { b } < \frac { a + 2 b } { a + b } \text { or, } \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}.
Therefore, to compare these two numbers, let us compute {tex} \frac { a } { b } - \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} \frac { a } { b } - \frac { a + 2 b } { a + b } = \frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex} {tex} = \frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}
{tex} \therefore \quad \frac { a } { b } - \frac { a + 2 b } { a + b } > 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}
{tex} \Rightarrow{/tex}    a2 - 2b2 > 0
{tex} \Rightarrow{/tex} a2> 2b2
{tex} \Rightarrow \quad a > \sqrt { 2 } b{/tex}
and, {tex} \frac { a } { b } - \frac { a + 2 b } { a + b } < 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}   
{tex} \Rightarrow{/tex} a2 - 2b2 < 0
{tex} \Rightarrow{/tex}a2 <2b2
{tex} \Rightarrow \quad a < \sqrt { 2 } b{/tex}
Thus, {tex} \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}, if {tex}a > \sqrt { 2 b }{/tex} and {tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}, if {tex} a < \sqrt { 2 } b{/tex}.
So, we have the following cases:
CASE I When {tex} a > \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } > \frac { a + 2 b } { a + b } \text { i.e., } \frac { a + 2 b } { a + b } < \frac { a } { b }{/tex}
We have to prove that
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
We have,
{tex} a > \sqrt { 2 } b{/tex}
{tex} \Rightarrow{/tex} a2> 2b[Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } > \left( a ^ { 2 } + 2 b ^ { 2 } \right) + 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + b ^ { 2 } \right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + 2 a b + b ^ { 2 } \right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } ( a + b ) > a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } > \frac { a + 2 b } { a + b }{/tex}  ........(i)
Again,
{tex} a > \sqrt { 2 } b {/tex}
{tex}\Rightarrow \frac { a } { b } > \sqrt { 2 }{/tex}  .......(ii)
From (i) and (ii), we get
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
CASE II When {tex} a < \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}
We have to show that {tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} a < \sqrt { 2 } b{/tex}
{tex} \Rightarrow \quad a ^ { 2 } < 2 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex} [Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex}\Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \sqrt { 2 } ( a + b ) < a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex} . ...(iii)
{tex} \Rightarrow \quad a < \sqrt { 2 } b \Rightarrow \frac { a } { b } < \sqrt { 2 }{/tex}  ....(iv)
From (iii) and (iv), we get
{tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
Hence, {tex} \sqrt { 2 }{/tex} lies between {tex} \frac { a } { b }{/tex} and {tex} \frac { a + 2 b } { a + b }{/tex}.

  • 2 answers

Manish Tanwar 6 years, 8 months ago

117561

Palak ? 6 years, 8 months ago

117561
  • 0 answers
  • 1 answers

😀 😀 6 years, 8 months ago

The number which is been divided with the polynomial is the value of k and been cut off as they both are same ..... EXAMPLE:- 2( x+y/2) 2 will be cancelled out
  • 3 answers

Manish Tanwar 6 years, 8 months ago

120

Bhagaban Reddy 6 years, 8 months ago

Sn=n/2(2a+(n-1)d)

Ashish Singh 6 years, 8 months ago

a=1 d=1 n÷2(2a + n-1× d) n=20
  • 1 answers

Yogita Ingle 6 years, 8 months ago

  AP , 2 , 7 , 12 , 17 , .........
a = 2 and d = 7 -2 = 5
a5 = a + 4d  = 2 + 4(5) = 2 + 20 = 22
a10 = a + 9d = 2 + 9(5) = 2 + 45 = 47
 

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App