No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Prashant Yadav 6 years, 8 months ago

Bro RD sharma ka maths S-Chand ke biology, chemistry, physics K.S Randhawa ke SST
  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

117 = 13 {tex}\times{/tex} 3 {tex}\times{/tex} 3
65 = 13 {tex}\times{/tex} 5
HCF (117, 65) = 13
LCM(117,65) = 13 {tex}\times{/tex} 5 {tex}\times{/tex} 3 {tex}\times{/tex} 3 = 585

Here is given that:
{tex}HCF =65m-117 {/tex}

{tex}13=65m-117{/tex}

{tex}65m=130{/tex}
m = {tex}\frac { 130 } { 6 5 } ={/tex}2

  • 2 answers

Brightlander... ?????? 6 years, 8 months ago

???????

Kishu ❤ 6 years, 8 months ago

Bbye..mai bhi ja rhi hun..gd nyt..tke care bestie???
  • 1 answers

Sia ? 6 years, 7 months ago

Here, {tex}\frac{AB}{DF}=\frac{4}{6}=\frac{2}{3}{/tex} , {tex}\frac{BC}{EF}=\frac{5}{7.5}=\frac{2}{3}{/tex} , {tex}\frac{AC}{DE}=\frac{3}{4.5}=\frac{2}{3}{/tex}

As, {tex}\frac{AB}{DF}=\frac{BC}{EF}=\frac{AC}{DE}{/tex}

So, {tex}\Delta ABC \sim \Delta DFE{/tex} [by SSS similarity criterion]

Hence ABC and DFE are similar triangles, but no other pairs of triangles in the given figure are similar.

  • 1 answers

Natkhat Chhokra 6 years, 8 months ago

Source of enargy
  • 6 answers

Palak Bansal 6 years, 7 months ago

Plz answer it

Palak Bansal 6 years, 7 months ago

Ashish just shut your mouth

Ashish ™ 6 years, 8 months ago

Jisko aata ho usne v to nhi kiya

Palak Bansal 6 years, 8 months ago

Runi yadav r u over smart. Ni aata to msg kyu kiya

Rubi Yadav 6 years, 8 months ago

Sry nhi ata Nt main dekh lo???

Palak Bansal 6 years, 8 months ago

Plzzz... answer it
  • 1 answers

Sia ? 6 years, 7 months ago

D = b2 - 4ac
{tex}= ( - 9 ( a + b ) ) ^ { 2 } - 4 \times 9 \times \left( 2 a ^ { 2 } + 5 a b + 2 a b ^ { 2 } \right){/tex}
= 81(a + b)2 - 36(2a2 + 5ab + 2b2)
= 9[9(a2 + b2 + 2ab - 8a2 - 20ab - 8b2)]
= 9[a2 + b2 - 2ab]
= 9(a - b)2
{tex}x = \frac { - b \pm \sqrt { D } } { 2 a } = \frac { 9 ( a + b ) \pm \sqrt { 9 ( a - b ) ^ { 2 } } } { 2 \times 9 }{/tex}
{tex}{ \Rightarrow x = 3 \frac { [ 3 ( a + b ) \pm ( a - b ) ] } { 2 \times 9 } }{/tex}
{tex}{ \Rightarrow x = \frac { ( 3 a + 3 b ) \pm ( a - b ) } { 6 } }{/tex}
{tex}\Rightarrow x = \frac { 3 a + 3 b + a - b } { 6 } \text { or } x = \frac { 3 a + 3 b - a + b } { 6 }{/tex}
{tex}\Rightarrow x = \frac { 4 a + 2 b } { 6 } \text { or } x = \frac { 2 a + 4 b } { 6 }{/tex}
{tex}\Rightarrow x = \frac { 2 a + b } { 3 } \text { or } x = \frac { a + 2 b } { 3 }{/tex}

  • 0 answers
  • 1 answers

Gaurav Seth 6 years, 8 months ago

LHS = ( 3 - √5 )/(3 + 2√5 )

= [(3-√5)(2√5-3)]/[(2√5+3)(2√5-3)]

= [6√5 - 9 -10 + 3√5 ]/[ ( 2√5 )² - 3² ]

= ( 9√5 - 19 )/( 20 - 9 )

= ( 9√5 - 19 )/11

= ( 9/11 )√5 - 19/11 ---( 1 )

= a√5 - b ----------( 2 ) [ RHS ]

from ( 1 ) and ( 2 ) ,

a = 9/11 ,

b = 19/11

  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

Let {tex} \alpha{/tex} and {tex} \frac { 1 } { \alpha }{/tex} be the zeros of (a+ 9)x+ 13x + 6a.
Then, we have
{tex} \alpha \times \frac { 1 } { \alpha } = \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ 1 = {tex} \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ a2 + 9 = 6a
⇒ a2 - 6a + 9 = 0
⇒ a2 - 3a - 3a + 9 = 0
⇒ a(a - 3)  - 3(a - 3) = 0
⇒ (a - 3) (a - 3) = 0
⇒ (a - 3)= 0
⇒ a - 3 = 0
⇒ a = 3
So, the value of a in given polynomial is 3.

  • 1 answers

Bhavya Mittal 4 years, 6 months ago

answer
  • 4 answers

Palak Bansal 6 years, 8 months ago

12

Abhilash Satapathy 6 years, 8 months ago

12

Anshika - 6 years, 8 months ago

12

Sonu Thakur 6 years, 8 months ago

12
  • 2 answers

Palak Bansal 6 years, 8 months ago

let the speed of rowing be 'x' km/h let speed of current be 'y' km/h upstream speed =x-y downstream speed =x+y x+y=20/2 x+y=10...... eqn 1 x-y=4/2 x-y=2........eqn 2 by eliminating x+y=10 x-y=2 (-) (+) (-) 2y =8 y=4 putting y=8 in eqn 1 x+4=10 x=6 x=6 y=10. Ans

Arjun Bhatty 6 years, 8 months ago

Speed of rowing in still water = 6 km/hr Speed of current = 4 km/hr
  • 1 answers

Sia ? 6 years, 7 months ago

Let the speeds of the cars from A and B be x km/hr and y km/hr respectively.
Case I When the two cars move in the same direction:
In this case, let them meet at M after 5 hours

Then, AM = 5x km.
And, BM = 5y km.
{tex}\therefore{/tex} AM -BM = AB
{tex}\Rightarrow{/tex} 5x - 5y = 100
{tex}\Rightarrow{/tex} 5(x - y) = 100
{tex}\Rightarrow{/tex} x - y = 20 ...............(i)
Case II When the two cars move in the opposite directions:

Let one car move from A to B  and let the other move from B to A.
Let them meet at N after 1 hour.
Then, AN = x km and BN = y km.
{tex}\therefore{/tex}  AN + BN = AB
{tex}\Rightarrow{/tex} x + y = 100. ............. (ii)
Adding (i) and (ii), we get
(x - y) + ( x + y) = 100 + 20
{tex}\Rightarrow{/tex} x - y + x + y = 120
{tex}\Rightarrow{/tex} 2x = 120
{tex}\Rightarrow{/tex} x = 60.
Putting x = 60 in (ii), we get
x+ y = 100
{tex}\Rightarrow{/tex} 60 + y = 100
{tex}\Rightarrow{/tex} y= 100 - 60
{tex}\Rightarrow{/tex} y = 40.
So, x = 60 and y = 40
Hence , speed of the car from A = 60 km/hr,
and speed of the car from B = 40 km/hr

  • 1 answers

Palak Bansal 6 years, 8 months ago

What cbse 2019 paper
  • 2 answers

Palak Bansal 6 years, 8 months ago

Correct

Pranitha Bonala 6 years, 8 months ago

Let n,n+1 be two positive ingtegers. Consecutive numbers always be one odd and one even.product of an even and one odd always give another even.so even is divisible by 2.so n(n+1) is divisible by 2
  • 1 answers

Sia ? 6 years, 7 months ago


We have,
{tex}\sin \theta = \frac { \text { Perpendicular } } { \text { Hypotenuse } } = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } }{/tex}
So, Let us draw a right triangle ABC in which {tex}\angle B{/tex} is right angle, we have
Perpendicular = BC = a2 - b2  Hypotenuse = AC = a2 + b2  and, {tex}\angle B A C = \theta{/tex}
By Pythagoras theorem, we have
AC2 = AB2 + BC2
{tex}\Rightarrow \quad \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } = A B ^ { 2 } + \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } - \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = \left( a ^ { 4 } + b ^ { 4 } + 2 a ^ { 2 } b ^ { 2 } \right) - \left( a ^ { 4 } + b ^ { 4 } - 2 a ^ { 2 } b ^ { 2 } \right){/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = 4 a ^ { 2 } b ^ { 2 } = ( 2 a b ) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B = 2 a b{/tex} 
Now, Let{tex}\angle B A C = \theta{/tex} 
We have
Base = AB = 2ab, Perpendicular {tex}= \mathrm { BC } = a ^ { 2 } - b ^ { 2 }{/tex}, Hypotenuse = AC = a2 + b2
Therefore, {tex}\quad \cos \theta = \frac { \text { Base } } { \text { Hypotenuse } } = \frac { 2 a b } { a ^ { 2 } + b ^ { 2 } }{/tex}{tex}\tan \theta = \frac { \text { Perpendicular } } { \text { Base } } = \frac { a ^ { 2 } - b ^ { 2 } } { 2 a b }{/tex}
{tex}\quad cosec \;\theta = \frac { \text { Hypotenuse } } { \text { Perpendicular } } = \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } , \quad \sec \theta = \frac { \text { Hypotenuse } } { \text { Base } } = \frac { a ^ { 2 } + b ^ { 2 } } { 2 a b }{/tex}
and, {tex}\cot \theta = \frac { \text { Base } } { \text { Perpendicular } } = \frac { 2 a b } { a ^ { 2 } - b ^ { 2 } }{/tex}

  • 1 answers

Palak Bansal 6 years, 8 months ago

Do with algorithm method
  • 1 answers

Gaurav Seth 6 years, 8 months ago

Composite Numbers -

A composite number is a positive integer that has a factor other than 1 and itself. For instance, 12 is a composite number because it is a positive integer and it has factors other than 1 and itself. 2, 3, 4, 6 are its factors other than 1 and itself. All even numbers greater than 2 are composite numbers. 2 is a prime number. The smallest composite number is 4.

Prime numbers:

Numbers which have only two factors 1 and the number itself are called prime numbers.

E.g 2 ,3 ,5, 7 ,11 ,13, 17 and so on are all prime numbers.

Of the first 100 numbers 25 are prime numbers.

Only 2 is an even prime number all prime numbers are odd.

Co prime numbers:

Numbers which do not have any common factor between them other than one are called coprime numbers.

Two natural numbers( not necessarily Prime) are coprime if their HCF is 1.
For e.g 
(1,2) , (1,3), (3,4), (3,10), (3,8), (5,6), (17,23)

even two composite numbers can also be Prime. for e.g
(16,25), (84,65)

  • 1 answers

Rohit Sahani? 6 years, 8 months ago

Maine commerce liya hai
  • 1 answers

Gaurav Seth 6 years, 8 months ago

Let side of first square be x and the side of another square be y.
difference in perimeter of two squares:-
4x-4y=16
4(x-y)=16
x-y=16/4
therefore, x-y=4
and x=4+y---take this(1)
 
sum of areas of two squares:-
 x²+y²=400
Put (1) here
(4+y)²+y²=400
(4)²+(y)²+2×4×y+y²=400
16+y²+8y+y²=400
2y²+8y+16-400=0
2y²+8y-384=0
2(y²+4y-192)=0 (here we have taken 2 common and take to another side. then it becomes:-)
y²+4y-192=0
we have done with factorisation method:-
y²-12y+16y-192=0
y(y-12)+16(y-12)=0
(y+16) (y-12)=0
either:-                             |             or:-
y+16=0                            |                   y-12=0
y= -16                              |                   y=12

we will take y=12 because y being side cannot be negative.
So, y=12
put y=12 in (1)
x=4+y
x=4+12
therefore, x=16
and hence, Side of first square= x = 16
and Side of another square= y = 12.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App