No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Puja Rani 1 year, 9 months ago

Given points are collinear. Therefore, [p×n+m(q−n)+(p−m)q]−[m×q+(p−m)n+p(q−n)]=0 (pn+qm−mn+pq−mq)−(mq+pn−mn+pq−pn)=0 pn−mq=0 pn=qm
  • 0 answers
  • 5 answers

Ambika Venkat 1 year, 9 months ago

3/4

Deepesh Kushmi 1 year, 9 months ago

Cos A=b/h=4/5 h(square)=b(square)+p(square) 5(square)=4(square)+p(square) P(square)=25-16=9 p=3 Sin A=p/h=3/5 tan A=sin A ÷cos A =(3/5)÷(4/5)=3/4

Harshit Arora 1 year, 9 months ago

3/4

Ronak Khurana 1 year, 9 months ago

3/4

Aryan Rajput 1 year, 9 months ago

3/4
  • 1 answers

Mohit Kumar 1 year, 9 months ago

Two numbers whose HCF is 1 is called coprime number.
  • 2 answers

Rithika S 1 year, 9 months ago

By working out difficult sums Refer sample papers View previous years question paper In the answer sheet make sure to always attend the question If ever you don't know the solution for any question then just attend it and draw neat diagram as every step has marks (write Given, to prove, construct- which contains 1 mark)

Aastha Vats 1 year, 9 months ago

80
  • 2 answers

Aastha Vats 1 year, 9 months ago

HCF :- 13 and LCM :- 14×13 = 182

Aryan Tomar 1 year, 9 months ago

LCM :- 182 HCF :- 14
  • 1 answers

Preeti Dabral 1 year, 8 months ago

{tex}\frac { x } { a } + \frac { y } { b } = 2{/tex}
{tex}\frac { b x + a y } { a b } = 2{/tex}
{tex}bx + ay = 2ab{/tex}........(i)
{tex}ax - by = (a^2 - b^2){/tex}...(ii)
Multiplying (i) by b and (ii) by a
{tex}b^2x + bay = 2ab^2{/tex}.............(iii)
{tex}a^2x - bay = a(a^2 - b^2){/tex}........(iv)
Adding (iii) and (iv),we get
{tex}b^2x + a^2x = 2ab^2 + a^3 - ab^2{/tex}
{tex}x(b^2 + a^2) =  2ab^2 + a^3 - ab^2{/tex}
{tex}x(b^2 + a^2) = ab^2 + a^3{/tex}
{tex}x(b^2 + a^2) =a(b^2 + a^2){/tex}
{tex}x = \frac { a \left( b ^ { 2 } + a ^ { 2 } \right) } { \left( b ^ { 2 } + a ^ { 2 } \right) } = a{/tex}
Putting x = a in (i),we get
{tex}b \times a + a y = 2 a b{/tex}
{tex}a y = 2 a b - a b \Rightarrow a y = a b{/tex} or y = b
{tex}\therefore{/tex} solution is x = a, y = b

  • 2 answers

Omya Aryan 1 year, 9 months ago

6/2(1+2)= 6/2(3)=18/2=9

Saket Tiwari 1 year, 9 months ago

9
  • 2 answers

Mohd Ali 1 year, 9 months ago

Find LCM and HCF 26and91

Krishna Kanwar 1 year, 9 months ago

Yess
  • 1 answers

Shanu Yadav 1 year, 9 months ago

Learn all the formulas of both the chapters and practice ncert questions then refer rs agrawal or rd sharma book
  • 2 answers

Shruti Singh 1 year, 9 months ago

My pre boards are going on , so I'm very nervous

Shanu Yadav 1 year, 9 months ago

I'm also nervous regarding exams.
  • 5 answers

Tanya Chauhan 1 year, 9 months ago

66

Saad Chaudhary 1 year, 9 months ago

66

Shanu Yadav 1 year, 9 months ago

66

Vivek Sisodiya 1 year, 9 months ago

66

Vivek Sisodiya 1 year, 9 months ago

36
  • 3 answers

Shanu Yadav 1 year, 9 months ago

625/25=25

Dev Katiyar 1 year, 9 months ago

25

Vivek Sisodiya 1 year, 9 months ago

Answer is 25
  • 3 answers

Omya Aryan 1 year, 9 months ago

-2.2

Choudhary Kundan 1 year, 9 months ago

  Use app Login Question  Find x if 4x+6x=9x A ln2−ln3ln(3​−1)+ln2​ Correct Answer B ln2−ln3ln(5​−1)+ln2​ C ln2−ln3ln(5​−1)−ln2​ D ln3−ln2ln(5​−1)+ln2​ Medium Open in App Solution  Verified by Toppr Correct option is A) 6x+4x=9x divide by 4x to form (23​)x 4x6x​+1=4x9x​ (23​)x+1=(23​)2x ((23​)x)2−(23​)x−1=0 So (23​)x=21±1−4.1(−1)​​=21±,5​​ For positive solution (23​)x=21+5​​ Applying logarithm xln(23​)=ln(21+5​​) lnba​=lna−lnb x=ln3−ln2ln(1+5​)−ln2​.

Uttam Soni 1 year, 9 months ago

-0. 98
  • 2 answers

Aastha Vats 1 year, 9 months ago

a+24d - (a+19d) = 24d - 19 d = 5d d = 1/5

Muzaif Ur Rahman 1 year, 9 months ago

Write question properly
  • 1 answers

Muzaif Ur Rahman 1 year, 9 months ago

In circle C(O,r) AB is a tangent CONST. Join OA AND OB And OC PROOF IN TRIANGLE(OAC) & TRIANGLE(OBC) OC=OC -----common side ANGLE OAC = OBC ANGLE C=90° ------ BY RADIUS TANGENT THEORM THEREFORE BY RHS CRITERIA TRIANGLE OAC=OBC THEREFORE OC IS PERPENDICULAR TO AB hence PROVED
  • 1 answers

Rithika S 1 year, 9 months ago

5th row
  • 1 answers

Preeti Dabral 1 year, 8 months ago

Let the digits of the required 3 - digit number at hundreds, tens and ones places be  {tex}a - d, ~ a , ~ a + d{/tex} respectively
Then their sum = 15
i.e, {tex}a - d + a + a + d{/tex} = 15
{tex}\Rightarrow{/tex} {tex}3a{/tex} = 15
 {tex}\Rightarrow{/tex} {tex}a{/tex} = 5
Required three digit number = {tex}100(a - d) + 10a + a + d{/tex}
= {tex}100a - 100d + 10a + a + d{/tex}
= {tex}111a - 99d{/tex}
Number obtained by reversing the digits = {tex}100(a + d) + 10a + a - d{/tex}
= {tex}100a + 100d + 10a + a - d{/tex}
= {tex}111a + 99d{/tex}
According to the question,
{tex}111a + 99d = 111a - 99d - 594{/tex}
{tex}\Rightarrow{/tex} {tex}594 = 111a - 99d - 111a - 99d{/tex}
{tex}\Rightarrow{/tex}{tex}594 = -198d{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { - 594 } { 198 } = d{/tex}
{tex}d = -3{/tex}
The number is 111a - 99d
{tex}111 \times 5 - 99 \times - 3{/tex}= 852
555 + 297 = 852
Therefore, Number is 852.

  • 1 answers

Harsh Harsh 1 year, 9 months ago

Introduction to trigonometry
  • 2 answers

Neelam Devi 1 year, 9 months ago

Construction Chapter no. 11

Adarsh Jha 1 year, 9 months ago

5
  • 1 answers

Parth Yadav 1 year, 9 months ago

It depends on question. Practice the ncert sum by reffering to answer. You will get an idea.
  • 1 answers

Preeti Dabral 1 year, 8 months ago


As per given condition
Area of sector OAPB = {tex}\frac { 5 } { 36 }{/tex}times the area of circle
{tex}\therefore \quad \pi r ^ { 2 } \times \frac { \theta } { 360 } = \frac { 5 } { 36 } \pi r ^ { 2 }{/tex}
{tex}\therefore \quad \pi r ^ { 2 } \times \frac { x } { 360 } = \frac { 5 } { 36 } \pi r ^ { 2 }{/tex}
{tex}\frac { x } { 360 } = \frac { 5 } { 36 }{/tex} or,
{tex}\begin{array}{l}36\mathrm x=360\;\times5\end{array}{/tex}
{tex}\\\mathrm x=\frac{360\;\times5}{36}{/tex}
{tex}\\\mathrm x=\;10\;\times5{/tex}
{tex}\\\mathrm x\;=\;50{/tex}

  • 2 answers

Sparshika Singh 1 year, 9 months ago

x+y=14 x=14-y___(1) Substituting value in second equation x-y=4 14-y-y=4 14-2y=4 10=2y y=5 From (1) x=14-y =14-5 =9

Banty Kumari 1 year, 9 months ago

X+Y=14-------(i) X-Y=4--------(ii) From eq----(i) X+Y=14 Y=14-x---------(iii) Putting its value in eq-------(ii) X-Y=4 X-(14-x)=4 X-14+x=4 2x-14=4 2x=4+14 2x=18 X=18/2 X=9 Putting it's value in eq-------(iii) Y=14-x Y=14-9 Y=5 •:x=9,y=5
  • 3 answers

Pawan Sharma 1 year, 9 months ago

Albert Einstein law is correct.

Anushka Sharma 1 year, 9 months ago

Albert Einstein law

Omya Aryan 1 year, 9 months ago

Newton's law

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App