No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Dushyant Shukla 1 year, 9 months ago

Chapter 3ki exercise 3.2 ka question 5 ka answer

Anmol Kumar 1 year, 9 months ago

No question
  • 2 answers

Omya Aryan 1 year, 9 months ago

The number in the form of p/q where p is numerator and q is denominator is called fraction. & The number in the form of p/q where q≠0, is known as rational number.

Mr Thunder 1 year, 9 months ago

same ...
  • 1 answers

Mahir Kumar 1 year, 9 months ago

Strive not to be a success, but rather to be of value.
  • 4 answers

A B 1 year, 9 months ago

sorry son age =10

A B 1 year, 9 months ago

sonia age =10 father age =30

Vipan Kaur 1 year, 9 months ago

Let the Sonia age = x years AND his father age = 3 times the Sonia age = 3x According to our question , 3x + x = 40 4x = 40 X = 10 Therefore,Sonia age = 10 years And his father age = 3× 10 = 30 years

Arnav Som 1 year, 9 months ago

Let son be x Father will be 3 x ATQ 3x+x=40 4x=40 x=10 Son - 10 years Father - 30 years
  • 5 answers

Atharv Wankhade 1 year, 9 months ago

7 is best anwer because (x,y)=(4,7) y=7 hence distance from y axis is 7

Vaibhav Gupta 1 year, 9 months ago

Lol 4

Vaibhav Gupta 1 year, 9 months ago

7

Deepak Sharma 1 year, 9 months ago

4 unit

Arnav Som 1 year, 9 months ago

4 units
  • 5 answers

Ayush Mishra 1 year, 9 months ago

By study

Deepak Sharma 1 year, 9 months ago

Study

Ankush Pandey 1 year, 9 months ago

To using mobile

Aniket Tanwar 1 year, 9 months ago

Study

Shoumik Meow 1 year, 9 months ago

NCERT thoroughly
  • 2 answers

K. Hema 1 year, 9 months ago

Given, D is a point on the side BC of a triangle ABC such that ∠ADC = ∠BAC. In ΔADC and ΔBAC, ∠ADC = ∠BAC (Already given) ∠ACD = ∠BCA (Common angles) ∴ ΔADC ~ ΔBAC (AA similarity criterion) We know that corresponding sides of similar triangles are in proportion. ∴ ����=����CBCA​=CACD​ ⇒ CA2 = CB.CD. Hence, proved.

Abell Thankachan 1 year, 9 months ago

I don't know
  • 1 answers

Bilal Shaikh 1 year, 9 months ago

What is meaning of Pythagoras
  • 2 answers

Renuka Sahoo 1 year, 9 months ago

=Sin²A+Cosec²A+2SinA.CosecA+Cos²A+Sec²A+2CosA.SecA =Sin²A+Cosec²A+Cos²A+Sec²A+4 =Sin²A+Cos²A+4+Cosec²A+Sec²A =1+4+Cosec²A+Sec²A =5+1+Cot²A+1+Tan²A =7+tan²A+Cot²A

V R 1 year, 9 months ago

That is a wrong questions... Right questions is (SinA+cosecA)^2 +(cosA + secA)^2=(7+tan2A+ cot2A)
  • 2 answers

V R 1 year, 9 months ago

It is a trigonometry ratio. Which is (cotA=cosA/sinA)

Parth Yadav 1 year, 9 months ago

Trignometric ratio Cot= cos/sin
  • 5 answers

Gautam Bansal 1 year, 9 months ago

Let an=205 , d =a2-a1=6 a+(n-1)d =205 7+(n-1)6=205 (n-1)6= 205-7 (n-1)6 =198 n-1 =198/6 n-1 =33 n=34 Ans.

Aryan Sharma 1 year, 9 months ago

34 terms

Ayush Garg 1 year, 9 months ago

7,13,19..........205 a=7 , d=13-7=19-13=6 an= a+(n-1)d 205=7+(n-1)6 (205-7)/6=n-1 198/6=n-1 33=n-1 34=n answer

Manika Sharma 1 year, 9 months ago

7,13,19........205 a=7. d = 13 - 7 = 6. an = 205 an = a + (n -1) d 205 = 7 + ( n -1) 6 205 - 7 = (n -1) 6 198/6 = ( n - 1) 33 = ( n - 1) n = 34

Jayant Khanna 1 year, 9 months ago

n = 34
  • 4 answers

A B 1 year, 9 months ago

after tan,it will be placed..

A B 1 year, 9 months ago

Sorry, but this question is wrong. here it will be +cot on the place of -cos ....then you can solve it..

Vivek Prajapati 1 year, 9 months ago

Tum 3 bracket mein cot kardo uske baad cosec ko sin mein sec ko cos mein aur tan ko cot mein kardo ho jayega girl

Vivek Prajapati 1 year, 9 months ago

R u sure 3 bracket mein tan ke aage cos hoga ya cot
  • 1 answers

Preeti Dabral 1 year, 9 months ago

In mathematics, factor theorem is used when factoring the polynomials completely. It is a theorem that links factors and zeros of the polynomial. According to factor theorem, if f(x) is a polynomial of degree n ≥ 1 and 'a' is any real number, then, (x-a) is a factor of f(x), if f(a)=0.

  • 2 answers

Arham Jain 1 year, 9 months ago

Step. 1 add both eq. So we get , X+y=10 ...................................(I) Step. 2 substract eq 2 from 1 So, we get, X-y=1............................... (II) Now add both above eq So we get the value of x = 11/2 And value of y=9/2...

Himanshi Yadav 1 year, 9 months ago

Step. 1 add both eq. So we get , X+y=10 ............. (I) Step. 2 substract eq 2 from 1 So, we get, X-y=1.......... (II) Now add both above eq So we get the value of x = 11/2 And value of y=9/2...
  • 4 answers

Vipan Kaur 1 year, 9 months ago

First complete all NCERT ,then solve sample papers and then previous year question paper + sample paper for board exams

Dev Sharma 1 year, 9 months ago

Questions bank on cbse site

Nayra Shrivastava 1 year, 9 months ago

This content has been hidden. One or more users have flagged this content as inappropriate. Once content is flagged, it is hidden from users and is reviewed by myCBSEguide team against our Community Guidelines. If content is found in violation, the user posting this content will be banned for 30 days from using Homework help section. Suspended users will receive error while adding question or answer. Question comments have also been disabled. Read community guidelines at https://mycbseguide.com/community-guidelines.html

Few rules to keep homework help section safe, clean and informative.
  • Don't post personal information, mobile numbers and other details.
  • Don't use this platform for chatting, social networking and making friends. This platform is meant only for asking subject specific and study related questions.
  • Be nice and polite and avoid rude and abusive language. Avoid inappropriate language and attention, vulgar terms and anything sexually suggestive. Avoid harassment and bullying.
  • Ask specific question which are clear and concise.

Remember the goal of this website is to share knowledge and learn from each other. Ask questions and help others by answering questions.

Aleeza Siddique 1 year, 9 months ago

Previous years question papers
  • 1 answers

Preeti Dabral 1 year, 9 months ago

Since {tex}\triangle {/tex} NSQ {tex}\cong{/tex} {tex}\triangle {/tex}MTR
{tex}\therefore {/tex} {tex}\angle{/tex} SQN = {tex}\angle{/tex} TRM
{tex}\Rightarrow {/tex} {tex}\angle{/tex} Q= {tex}\angle{/tex} R(in {tex}\triangle {/tex}PQR)
 {tex}\angle Q{/tex} = 90o - {tex}\frac{1}{2}\angle P{/tex}
Again 1 = {tex}\angle{/tex} 2 [given in {tex}\triangle {/tex} PST](Isosceles property)
{tex}\therefore {/tex} {tex}\angle{/tex} 1= {tex}\angle{/tex} 2 = {tex}\frac{1}{2}\left( {{{180}^ \circ } - \angle P} \right){/tex}     
{tex}= {90^ \circ } - \frac{1}{2}\angle P{/tex}
Thus, in {tex}\triangle {/tex}PTS and {tex}\triangle {/tex}PRQ
{tex}\angle{/tex} 1 = {tex}\angle{/tex} Q [Each = 90° - {tex}\frac{1}{2}\angle P{/tex}]
{tex}\angle{/tex} 2 = {tex}\angle{/tex} R, {tex}\angle{/tex} P= {tex}\angle{/tex} P(Common)
{tex}\triangle {/tex} PTS {tex}\cong{/tex} {tex}\triangle {/tex}PRQ

  • 1 answers

Preeti Dabral 1 year, 9 months ago

Since {tex}\alpha \text { and } \beta{/tex} are the zeroes of polynomial 3x2 + 2x + 1.
Hence, {tex}\alpha + \beta = - \frac { 2 } { 3 }{/tex}
and {tex}\alpha \beta = \frac { 1 } { 3 }{/tex}
Now, for the new polynomial,
Sum of zeroes = {tex}\frac { 1 - \alpha } { 1 + \alpha } + \frac { 1 - \beta } { 1 + \beta }{/tex}
{tex}= \frac { ( 1 - \alpha + \beta - \alpha \beta ) + ( 1 + \alpha - \beta - \alpha \beta ) } { ( 1 + \alpha ) ( 1 + \beta ) }{/tex}
{tex}= \frac { 2 - 2 \alpha \beta } { 1 + \alpha + \beta + \alpha \beta } = \frac { 2 - \frac { 2 } { 3 } } { 1 - \frac { 2 } { 3 } + \frac { 1 } { 3 } }{/tex}
{tex}\therefore{/tex} Sum of zeroes = {tex}\frac { 4 / 3 } { 2 / 3 } = 2{/tex}
Product of zeroes = {tex}\left[ \frac { 1 - \alpha } { 1 + \alpha } \right] \left[ \frac { 1 - \beta } { 1 + \beta } \right]{/tex}
{tex}= \frac { ( 1 - \alpha ) ( 1 - \beta ) } { ( 1 + \alpha ) ( 1 + \beta ) }{/tex}

{tex}=\frac{1-(\alpha+\beta)+\alpha \beta}{1+(\alpha+\beta)+\alpha \beta}{/tex}
{tex}{/tex} {tex}={/tex} {tex}\frac { 1 + \frac { 2 } { 3 } + \frac { 1 } { 3 } } { 1 - \frac { 2 } { 3 } + \frac { 1 } { 3 } } = \frac { \frac { 6 } { 3 } } { \frac { 3 } { 3 } } = 3{/tex}
Hence, Required polynomial = x2 - (Sum of zeroes)x + Product of zeroes
= x2 - 2x + 3

  • 1 answers

Preeti Dabral 1 year, 9 months ago

To find the AP if the sum of first n terms of arithmetic progression is 210 and sum of its first (n-1) terms is 171. If the first term is 3 .

As we know that if AP has n terms,then after removing (n-1) terms,we are left with the last term.

ACF, last term is 210-171

l= 39

a= 3

  • 2 answers

Manish Verma 1 year, 9 months ago

6 cm is the right answer

Arya Jain 1 year, 9 months ago

Vol of cone = vol of sphere 1/3πr^h = 4/3πr^3
  • 5 answers

Vivek Prajapati 1 year, 9 months ago

-2;+2

Sruti .S 1 year, 9 months ago

This content has been hidden. One or more users have flagged this content as inappropriate. Once content is flagged, it is hidden from users and is reviewed by myCBSEguide team against our Community Guidelines. If content is found in violation, the user posting this content will be banned for 30 days from using Homework help section. Suspended users will receive error while adding question or answer. Question comments have also been disabled. Read community guidelines at https://mycbseguide.com/community-guidelines.html

Few rules to keep homework help section safe, clean and informative.
  • Don't post personal information, mobile numbers and other details.
  • Don't use this platform for chatting, social networking and making friends. This platform is meant only for asking subject specific and study related questions.
  • Be nice and polite and avoid rude and abusive language. Avoid inappropriate language and attention, vulgar terms and anything sexually suggestive. Avoid harassment and bullying.
  • Ask specific question which are clear and concise.

Remember the goal of this website is to share knowledge and learn from each other. Ask questions and help others by answering questions.

Mukul Singh 1 year, 9 months ago

2

Taniya . 1 year, 9 months ago

Therefore, the zero of the polynomial 2x - 4 is 2.

Deepak Sharma 1 year, 9 months ago

Only one
  • 5 answers

Aditya Yadav 1 year, 9 months ago

Pass ho jauga Mai

Adiba Mansuri 1 year, 9 months ago

After solving rd Sharma, solve previous year papers...

Sejan Suhail 1 year, 9 months ago

Tuhamar fail hona paka hai🤣🤣

Sahil Rawat 1 year, 9 months ago

After doing Rd sharma Solve sample paper

Tarun Singh Rathour 1 year, 9 months ago

Yes you can but you have to study with concentration
  • 2 answers

Taniya . 1 year, 9 months ago

Let us assume, 5−√3​ is a rational number ⇒5−√3​=qp​, where p,q∈z,q=0 5−qp​=√3​ ⇒q5q−p​=√3​ ⇒√3​ is a rational number ∵q5q−p​ is rational but √3​ is not a rational number. This gives us a contradiction.  ∴ our assumption that 5−√3​ is a rational number is wrong  ⇒5−√3​ is an irrational number.

Aditya Verma 1 year, 9 months ago

Let we assume that 5-√3 is rational.so we can write is on p/q where pq are coprime and q not equal to 0 5-√3=p/q √3=p/q-5 So p/q is integers so therefore √3 is rational But we know the fact that √3 is irrational Our assumption get wrong so therefore 5-√3 is irrational Hence proved....
  • 1 answers

Vinita Chauhan 1 year, 9 months ago

Sin A/cosA÷sinA-cosA/sinA +cosA/sinA÷cosA-sinA/cosA =sin²A÷cos(sin-cos)+cos²÷sin(cos-sin) Rest you can solve
  • 1 answers

Preeti Dabral 1 year, 8 months ago

Let a be the first term and d be the com m on difference of the given A.P. Then,
S= Sn
{tex}\Rightarrow \frac{m}{2}{/tex}{2a + (m - 1) d} = {tex}\frac{n}{2}{/tex}{2a + (n - 1) d}
{tex}\Rightarrow{/tex} 2a(m - n) + {m(m - 1) - n(n - 1)} d = 0
{tex}\Rightarrow{/tex} 2a(m - n) + [(m- n2) - (m - n)d = 0
{tex}\Rightarrow{/tex} (m - n){2a + (m + n - 1)d = 0
{tex}\Rightarrow{/tex} 2a + (m + n - 1)d = 0 [{tex}\because{/tex} m - n {tex}\ne{/tex} 0] ...(i)
{tex}\therefore {/tex} Sm+n = {tex}\frac{m+n}{2}{/tex} {2a + (m + n - 1) d} = {tex}\frac{m+n}{2} \times {/tex} 0 = 0 [Using (i)]
Hence proved on basis of above equation.

  • 2 answers

Taniya . 1 year, 9 months ago

h=23​​×2=√3​ But the required length is L=1+h+1 So, L=2+√3​

K. Hema 1 year, 9 months ago

H=root 3, l=1+h+1,=1+root 3+1 =2+ root 3 is the answer.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App