No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Urja Patwary 6 years, 5 months ago

2xcube+2xsquare+xsquare+x-6x-6 2x^2(x+1)+x(x+1)-6(x+1) 2x^2+4x-3x-6(x+1) 2x(x+2)-3(x+6)(x+1) (2x-3)(x+6)(x+1) Therefore the zeros are- (3/2),(-6),(-1).
  • 2 answers

Anil Yadav 6 years, 5 months ago

2x+5x+3y = 7x+ 3y

Prachi Yadav?? 6 years, 5 months ago

7x+3y
  • 1 answers

Anjana Ghosh 6 years, 5 months ago

divisibility test of 13 is the number in the 13 table is the divisibility test of 13
  • 1 answers

Darshan Darshan 6 years, 5 months ago

irrational
  • 1 answers

Sia ? 6 years, 5 months ago

Given points are collinear. Therefore

[p {tex}\times{/tex} n + m(q - n) + (p - m) q] - [m {tex}\times{/tex} q + (p - m) n + p (q - n)] = 0
{tex}\Rightarrow{/tex} (pn + qm - mn + pq - mq) - (mq + pn - mn + pq - pn) = 0
{tex}\Rightarrow{/tex} (pn + p q - mn) - (mq - mn + pq) = 0
{tex}\Rightarrow{/tex} pn - mq = 0
{tex}\Rightarrow{/tex} pn = qm

  • 1 answers

Sia ? 6 years, 5 months ago

Let n = 4q + 1 (an odd integer)
{tex}\therefore \quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}
{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \quad \text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}
{tex}= 16{q^2} + 8q{/tex}
{tex}= 8 \left( 2 q ^ { 2 } + q \right){/tex}
= 8m, which is divisible by 8.

  • 0 answers
  • 1 answers

Sandeep Dubey 6 years, 5 months ago

This is not time of geometric construction Its is time of Ap real no polynomial
  • 4 answers

Resham Verma 6 years, 5 months ago

5×7×11×13

Harshita Vatyani 6 years, 5 months ago

5×7×11×13

Sohil M 6 years, 5 months ago

5×7×11×13

Ayush Sahu 6 years, 5 months ago

5 . 7. 11. 13
  • 2 answers

Raman Virk 6 years, 5 months ago

It is incorrect

Babul Singh 6 years, 5 months ago

12h+24h=36h??
  • 1 answers

Yogita Ingle 6 years, 5 months ago

2x2 + kx - 3 = 0
Comparing equation with ax2 + bx + c = 0, we get
a = 2, b = k and c = -3
Discriminant = b2 - 4ac

= (k)2 - 4(2) (-3)
= k2 + 24
For equal roots,
Discriminant = 0
k2 + 24 = 0
k2 = - 24
k = -√24 = -2√6

 

  • 2 answers

Nm ???? 6 years, 5 months ago

Then do it by long divison method then we can find the hcf

Nm ???? 6 years, 5 months ago

Firstly take the biggest no. As a dividend and the smallest no. As a divisor then divide simply
  • 2 answers

Nm ???? 6 years, 5 months ago

Phle root2 ko irrational prove kro uske bad root 3 ko irrational prove kro use bad hm dekh skte h ki dono irrational prove ho gye use bad hm write krege irrational +irrational =irrational fr ik irrational k nitche root2 write krege +dsre irratinal k nitche root 3 write krege =irrational then we see that both prove irrational

Hardik Singh 6 years, 5 months ago

By contradiction method
  • 1 answers

Sanket Arjun 6 years, 5 months ago

80 and 40
  • 1 answers

Sia ? 6 years, 5 months ago

{tex}\because{/tex} x = {tex}\frac{2}{3}{/tex} is a root of {tex}ax^2 + 7x + b = 0{/tex}
{tex}\therefore{/tex} a({tex}\frac{2}{3}{/tex})2 + 7{tex}\times{/tex}{tex}\frac{2}{3}{/tex} + b = 0
{tex}\Rightarrow{/tex}{tex}\frac{4a + 42 + 9b}{9}{/tex} = 0 {tex}\Rightarrow{/tex} {tex}4a + 9b + 42 = 0{/tex} ...(i)
Also x = 3 is a root
{tex}\therefore{/tex} {tex}a(3)^2 + 7\times3 + b = 0{/tex}
{tex}\Rightarrow{/tex}{tex}9a + b + 21 = 0{/tex}
{tex}\Rightarrow{/tex}{tex}9(9a + b + 21) = 9\times0{/tex}
{tex}\Rightarrow{/tex}{tex}81a + 9b + 189 = 0 {/tex}...(ii)
(ii) and (i), we get

{tex}\Rightarrow{/tex} 77a = -147 {tex}\Rightarrow{/tex} a = {tex}\frac{-147}{77}{/tex} = {tex}\frac{-21}{11}{/tex}
When a = {tex}\frac{-21}{11}{/tex}, eq.(i) becomes
-4{tex}\times{/tex}{tex}\frac{21}{11}{/tex} + 9b + 42 = 0
{tex}\Rightarrow{/tex}{tex}\frac { - 84 + 99 b + 462 } { 11 }{/tex} = 0
{tex}\Rightarrow{/tex}99b + 378 = 0 b = {tex}\frac{-378}{99}{/tex} = {tex}\frac{-42}{11}{/tex}
{tex}\therefore{/tex} a = {tex}\frac{-21}{11}{/tex}, b = {tex}\frac{-42}{11}{/tex}.

  • 2 answers

Vibha Kumari Pehu 6 years, 5 months ago

For any positive integers a and b where A greater than B than there exist Q and R such that a = bq +r

Kartikeya Kotkar 6 years, 5 months ago

a =bq + r
  • 2 answers

Aaryan Gole 6 years, 5 months ago

1.414 (approx.)

P. Nitish Kumar 6 years, 5 months ago

1.414
  • 1 answers

Sia ? 6 years, 5 months ago

S1 = 1 + 2 + 3 + ....n
S2 = 1 + 3 + 5 + ...upto n terms
S3 = 1 + 4 + 7 + ...upto n terms
{tex}S _ { n} = \frac { n } { 2 } [ 2a + ( n - 1 ) d ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 (1) + ( n - 1 ) 1 ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 + n - 1 ]{/tex}
or, {tex}S _ { 1 } = \frac { n ( n + 1 ) } { 2 }{/tex}
Also, {tex}S _ { 2 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 2 ]{/tex}
{tex}S _ { 2 } = \frac { n } { 2 } [ 2 + 2n - 2 ]{/tex}
{tex}= \frac { n } { 2 } [ 2 n ] = n ^ { 2 }{/tex}
and {tex}S _ { 3 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 3 ]{/tex}
{tex}S _ { 3 } = \frac { n } { 2 } [ 2 + 3n - 3 ]{/tex}
{tex}= \frac { n ( 3 n - 1 ) } { 2 }{/tex}
Now, {tex}S _ { 1 } + S _ { 3 } = \frac { n ( n + 1 ) } { 2 } + \frac { n ( 3 n - 1 ) } { 2 }{/tex}
{tex}= \frac { n [ n + 1 + 3 n - 1 ] } { 2 }{/tex}
{tex}= \frac { n [ 4 n ] } { 2 }{/tex}
= 2n2 = 2S2
Hence Proved. 

  • 2 answers

Ramya Gowda 6 years, 5 months ago

3,9,15,..........99

Sanket Arjun 6 years, 5 months ago

2401
  • 1 answers

Tanushree Mathur 6 years, 5 months ago

If u want board papers of previous years then u can take from this app also
  • 1 answers

Roshan Patel 6 years, 5 months ago

10 की gaide
  • 1 answers

Anuj Srivastav 6 years, 5 months ago

The sky appear blue because the white light of the sun which when enters through our Atmostphere,then blue light cannot pass it due to its low wavelength and gets spread over the atmosphere.
  • 1 answers

Sagar Av 6 years, 5 months ago

Width is x Length is x+4 Perimeter of a rectangle is 2(l+b) 1/2 the perimeter 1/2*2(x+4+x)=36 2(2x+4)=72 4x+8=72 4x=64x X=16m which is the width Lenght is x+4 16+4 20m

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App