No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Nishant Bansal 6 years, 4 months ago

T*T-15=0 Now, Put, t=0 T-15=0 So,T=15 Therefore,zeroes are (0,15)
  • 1 answers

Raj Singh 6 years, 4 months ago

You have big tits and i got big **** so suck my ****
  • 1 answers

Raj Singh 6 years, 4 months ago

You have big boobs
  • 5 answers

Shelu Sharma 6 years, 4 months ago

C(r,c)

Utkarsh Kumar 6 years, 4 months ago

Which is closed curved figure

Akshay Krishnan 6 years, 4 months ago

A circle is a collection of points which are equidistant from a point

Santosh Kesarwani 6 years, 4 months ago

A circle is a simple Closed shape It is a Set Of all point In a plane .That are at agiven Distance for a givan Point At the centre equvalentry is called a circle

Ritik Raj 6 years, 4 months ago

A circle is a geometrical figure whose all radius is equal from centre
  • 5 answers

Raj Singh 6 years, 4 months ago

I am really sorry

Raj Singh 6 years, 4 months ago

So sorry I didn't know who is this

Raj Singh 6 years, 4 months ago

Oops sorry tisha someone has hacked my id i am not saying this

Raj Singh 6 years, 4 months ago

Where do you live

Raj Singh 6 years, 4 months ago

You are a naughty American girl
  • 2 answers

Sia ? 6 years, 4 months ago

x + y = 5 ...(1)
2x + 2y = 10 ...(2)
Here, a1 = 1, b1 = 1, c1 = -5
a2 = 2, b2 = 2, c2 = -10
We see that {tex}\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}{/tex}
Hence, the lines represented by the equations (1) and (2) are coincident.
Therefore, equations (1) and (2) have infinitely many common solutions, i.e., the given pair of linear equations is consistent.
Graphical Representation, we draw the graphs of the equations (1) and (2) by finding two solutions for each if the equations. These two solutions of the equations (1) and (2) are given below in table 1 and table 2 respectively.
For equation (1) x + y = 5 {tex}\Rightarrow{/tex} y = 5 - x
Table 1 of solutions

x 0 5
y 5 0

For equations (2) x + 2y = 10
{tex}\Rightarrow{/tex} 2y = 10 - 2x
{tex}\Rightarrow y = \frac{{10 - 2x}}{2} \Rightarrow{/tex} y = 5 - x
Table 2 of solutions

x 1 2
y 4 3

We plot the points A(0, 5) and B(5, 0) on a graph paper and join these points to form  the line AB representing the equation (1) as shown in the figure, Also, we plot the points C(1, 4) and D (2, 3) on the same graph paper and join these points to form the line CD representing the equation (2) as shown in the same figure.
 
In the figure we observe that the two lines AB and CD coincide.

Renuka Bhardwaj 6 years, 4 months ago

Wlc
  • 1 answers

Harsh Mishra 6 years, 4 months ago

If you mean, to prove (tan²θ - sin²θ) = tan²θ × sin²θ , then the answer will Be..... 

L.H.S = tan²θ - sin²θ 

= sin²θ/cos²θ - sin²θ 

= sin²θ [ 1/cos²θ - 1] 

[ we know, sec x = 1/cos x so, 1/cos²θ = sec²θ] 

= sin²θ [ sec²θ - 1] 

we also know that, sec² x - tan² x=1

so,sec² θ - tan² θ=1

or,sec² θ - 1 = tan² θ

then, sin² θ [sec²θ - 1] = sin² θ × tan² θ = RHS

Hence, (tan² θ - sin² θ) = tan² θ × sin² θ.

  • 2 answers

??Rohit Guha Roy?? 6 years, 4 months ago

What's wrong with this number?

Nm ???? 6 years, 4 months ago

What 1377
  • 1 answers

Palwinder Kaur 6 years, 4 months ago

U can Search on internet also ?
  • 1 answers

Pk . 6 years, 4 months ago

28/9
  • 1 answers

Yogita Ingle 6 years, 4 months ago

Let a be the positive integer.

And, b = 4 .

Then by Euclid's division lemma,

We can write a = 4q + r ,for some integer q and 0 ≤ r < 4 .

°•° Then, possible values of r is 0, 1, 2, 3 .

Taking r = 0 .

a = 4q .


Taking r = 1 .

a = 4q + 1 .

Taking r = 2

a = 4q + 2 .
Taking r = 3 .
a = 4q + 3 .

But a is an odd positive integer, so a can't be 4q , or 4q + 2 [ As these are even ] .
•°• a can be of the form 4q + 1 or 4q + 3 for some integer q .
Hence , it is solved

 

  • 1 answers

Iron Man 6 years, 4 months ago

alpha ^+bita^= (alpha +bita)^-2 alpha.bita = (-b/a)^-c/a=b^/a^-c/a then you can slved by subtraction .
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let A(x,o) be any point on the X-axis , which is equidistant from points (-1,0) and (5,0).

{tex}\Rightarrow (x+1)^2=(x-5)^2{/tex}

⇒ x2 + 2x + 1 = x2 - 10x + 25
⇒ 2x + 1 = -10x + 25
⇒ 2x + 10x = 25 - 1
⇒ 12x = 24
⇒ x = 24/12
{tex}\Rightarrow x= 2{/tex}

Therefore , Required point is (2,0).

  • 1 answers

Pranjal J. 6 years, 4 months ago

Oops .
  • 2 answers

Karan Sahu 6 years, 4 months ago

14

Pranjal J. 6 years, 4 months ago

Let be the two consecutive +ve integers are x and ( x+1) According to the question — x² + (x+1)² = 365 x² + x² + 2x + 1 = 365 [using (a+b)² = a² +2ab+ b²] 2x² +2x = 365 - 1 2x² + 2x - 364 = 0 Dividing above equation by 2 ,we get — x² + x - 182 = 0 x² + (14-13)x - 182 = 0 x² + 14x - 13x - 182 = 0 x(x+14) -13(x+14) = 0 (x + 14)(x - 13) = 0 So , (x = -14) & (x = 13) Since , positive cosecutive integer can never be negative . Hence, two consecutive positive integers are : x = 13 & (x + 1) = 14 Ans. Ans.
  • 1 answers

Sia ? 6 years, 4 months ago

α,β are zeros of ax2+bx+c

{tex}\mathrm{Then}\;\mathrm\alpha+\mathrm\beta=-\frac{\mathrm b}{\mathrm a}\;\mathrm{and}\;\mathrm{αβ}=\frac{\mathrm c}{\mathrm a}{/tex}

α4 + β4= (α2 + β2)2 - 2α2β2
=((α + β)2 - 2αβ)2 - (2αβ)2
{tex}={\left[ {\left( { - \frac{b}{a}} \right) - 2\left( {\frac{c}{a}} \right)} \right]^2} - \left[ {2{{\left( {\frac{c}{a}} \right)}^2}} \right]{/tex}
{tex} = {\left[ {\frac{{{b^2} - 2ac}}{{{a^2}}}} \right]^2} - \frac{{2{c^2}}}{{{a^2}}}{/tex}
{tex} = \frac{{{{\left( {{b^2} - 2ac} \right)}^2} - 2{a^2}{c^2}}}{{{a^4}}}{/tex}.

  • 1 answers

Ã.P.W.B.Đ ⚡ 6 years, 4 months ago

p(x)=x^2+kx-5/4=0 If x=1/2 Then p(1/2)= (1/2)^2+k(1/2)-5/4=0 p(1/2)= 1/4+k/2 -5/4=0 => -4/4+k/2=0 => k/2 -1=0 => k/2 =1 => k=2........ans.
  • 1 answers

Priyanshi Jain 6 years, 4 months ago

HCF of 12576 and 4052 is 4
  • 1 answers

Krishna Sharma 6 years, 4 months ago

x/2+2y/3=-1 Take lcm and solve 3x+4y=-6 mark it as 1 We will get 3x-y=9 after solving equation 2 From 1 and 2, 3x+4y=-6 3x-y=9 (-) (+) (-) 5y=-15 y=-3 x=2
  • 1 answers

Sia ? 6 years, 4 months ago

Given, an = 7 - 3n
Put n = 1, a1 = 7 - 3 {tex}\times{/tex} 1 = 7 - 3 = 4
Put n = 2, a2 = 7 - 3 {tex}\times{/tex} 2 = 7 - 6 = 1
Common difference(d) = 1 - 4 = -3
Sn = {tex}\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}
S25 = {tex} \frac { 25 } { 2 } [ 2 \times 4 + ( 25 - 1 ) ( - 3 ) ]{/tex}
{tex}= \frac { 25 } { 2 } [ 8 - 72 ]{/tex}
{tex}= \frac { 25 } { 2 } \times - 64{/tex}
= -800

  • 7 answers

Parm Basra 6 years, 4 months ago

2√5

Priyanshi Jain 6 years, 4 months ago

2√5 is the correct answer

Priya Jaiswal 6 years, 4 months ago

2 root five

Tiyara Singh 6 years, 4 months ago

2√5

Suryansh Verman 6 years, 4 months ago

2√5

Sujay Pathak 6 years, 4 months ago

5

Rohit Prasad 6 years, 4 months ago

2√5
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App