No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 4 answers

$N€H!L J@@T ? 6 years, 4 months ago

App kon ho

❤ 753 6 years, 4 months ago

Oo snehil ..kitni der baad aaye

Jatin Chaudhary 6 years, 4 months ago

Hi

Vaishali Goyal 6 years, 4 months ago

kyu
  • 4 answers

Dilpreet Singh 6 years, 4 months ago

1875

Ved Bishn0Oi Bishnoi 6 years, 4 months ago

50

Raj Narayan Jaiswal 6 years, 4 months ago

Ok

Raj Narayan Jaiswal 6 years, 4 months ago

Please help!
  • 1 answers

Sia ? 6 years, 4 months ago


Let the side of triangle = a

{tex}\therefore{/tex} BC = a {tex}\Rightarrow{/tex} BD = {tex}\frac{a}{2}{/tex}
Now area({tex}\triangle{/tex}BDE) = {tex}\frac{\sqrt{3}}{4}{/tex}({tex}\frac{a}{2}{/tex})2  = {tex}\frac{\sqrt{3}}{4}{/tex}{tex}\frac{a^2}{4}{/tex} = {tex}\frac{1}{4}{/tex}({tex}\frac{\sqrt{3}}{4}{/tex}a2) = {tex}\frac{1}{4}{/tex}area ({tex}\triangle{/tex}ABC).

or area({tex}\triangle{/tex}BDE)/area ({tex}\triangle{/tex}ABC) = {tex}\frac{1}{4}{/tex}

Hence proved.

  • 3 answers

Sandeep Yadav 6 years, 4 months ago

1

Maya Devi 6 years, 4 months ago

1

Maya Devi 6 years, 4 months ago

-1/2
  • 1 answers

Aditya Anand 6 years, 4 months ago

Please complete the question.
  • 1 answers

Prince Raj 6 years, 4 months ago

If possible,Let √5 be rational √5=a/b where a and b are integers and co-prime. On squaring both sides, (√5)²=(a/b)² 5=a²/b² a²=5b²_(¹) Clearly,5 is a factor of a² Then 5 is also a factor of a. a=5m On squaring both sides, a²=(5m)² a²=25m² 5b²=25m²[From eq(¹)] b²=5m² Clearly,5 is a factor of b² 5 is a factor of b. Here,a and b are integers where 5 is a factor of both the integers. So,there is a contradiction arisened 5 is not a co-prime no. Hence,√5 is irrational (By contradiction method)
  • 1 answers

Shruti Aggarwal 6 years, 4 months ago

D=360 km Original speed =x km /h If speed=x+5 km/h ATQ Speed=distance÷time SO, Original time=360 ÷x And New time=360÷x+5 Now as per ques Original time - 1=new time Or Original time - new time =1 So, (360÷x) - (360÷x+5) =1
  • 3 answers

Sirsti Sngm 6 years, 4 months ago

Plz write question properly

Shruti Aggarwal 6 years, 4 months ago

I

Shruti Aggarwal 6 years, 4 months ago

Is this ques correct??? According to me here it must be 2k+1 in the bracket instead of 2x+1 and 2x+3y=1 and ( k-1)x +(2x+1)y=k-1 are two different eq not a single one
  • 1 answers

Ram Baran 6 years, 4 months ago

X^2-4ax +4a^2=b^2 X2-2ax-2ax+4a2=b2 X(x-2a)-2a(x-2a)=b2 (x-2a)(x-2a)=b2 (X-2a)(x-2a-b2) Hence,these are the factors
  • 0 answers
  • 3 answers

?Niharika Sharma ? 6 years, 4 months ago

Sorry that emoji is ? * not?

?Niharika Sharma ? 6 years, 4 months ago

3125=5^5 Prime factorisation of 3125 is in the form of 2^n×5^m Therefore, 16/3125 has terminating decimal expansion?

Unknown J1711 6 years, 4 months ago

2^4 ÷ 5^5
  • 0 answers
  • 1 answers

Pk . 6 years, 4 months ago

48/133
  • 1 answers

Sia ? 6 years, 4 months ago

Since the points are collinear, then,
 Area of triangle = 0
{tex}\frac { 1 } { 2 } \left[ x _ { 1 } \left( y _ { 2 } - y _ { 3 } \right) + x _ { 2 } \left( y _ { 3 } - y _ { 1 } \right) + x _ { 3 } \left( y _ { 1 } - y _ { 2 } \right) \right] = 0{/tex}
{tex}\frac { 1 } { 2 } [ x ( - 4 + 5 ) + ( - 3 ) ( - 5 - 2 ) + 7 ( 2 + 4 ) ] = 0{/tex}
x + 21 + 42 = 0
x = -63

  • 1 answers

Ram Kushwah 6 years, 4 months ago

d=5 S9=75

So 75=9/2(2a+8*5)

150=18a+360

18a=150-360

18a=-210

a=-210/18=-11.67

an=-11.67+(n-1)*5

=-11.67+5n-5

an=5n-16.67

  • 1 answers

Sia ? 6 years, 4 months ago

ar({tex}\Delta{/tex}ABD) = {tex}\frac12{/tex}|-3(8) + 5(-6) + -5(2 - 4)|
= 22 sq units.
ar({tex}\Delta{/tex}BCD) = {tex}\frac12{/tex}|5(-2) + 7(-8)  -5(10)|
= 58 sq units
ar({tex}\Delta{/tex}ABD) + ar({tex}\Delta{/tex}BCD)
= 22 sq units + 58 sq units
= 80 sq units
{tex}\therefore{/tex} ar( Quad ABCD) = 80 sq units.

  • 1 answers

Sia ? 6 years, 4 months ago

Given that -5 is the root of {tex}2 x^{2}+p x-15=0{/tex}
Put x = -5 in {tex}2 x^{2}+p x-15=0{/tex} 
{tex}\Rightarrow{/tex} {tex}2(-5)^{2}+p(-5)-15=0{/tex}
{tex}\Rightarrow{/tex} {tex}50-5 p-15=0{/tex}
{tex}\Rightarrow{/tex} {tex}35 - 5p = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}5p = 35 {/tex}
{tex}\therefore{/tex} {tex}p = 7{/tex}
Hence the quadratic equation p {tex}(x^2 + x) + k = 0{/tex} becomes, {tex}7\left(x^{2}+x\right)+k=0{/tex}
{tex}7 x^{2}+7 x+k=0{/tex} 
Here {tex}a = 7,\ b = 7\ and\ c = k{/tex} Given that this quadratic equation has equal roots 
{tex}\therefore{/tex} {tex}b^{2}-4 a c=0{/tex} 
{tex}\Rightarrow{/tex} {tex}7^{2}-4(7)(\mathrm{k})=0{/tex} 
{tex}\Rightarrow{/tex} {tex}49 - 28k = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}49 = 28k {/tex}
{tex}\therefore{/tex} k =  {tex}\frac{49} {28}{/tex} = {tex}\frac{7} {4}{/tex}

  • 1 answers

Janu Likki 6 years, 4 months ago

Use formula sigma.fi×xi/sigma.fi
  • 3 answers

Janu Likki 6 years, 4 months ago

(X^2-x^1)+(y^2-y^1) (-5-0)^2+(5,0)^2 (5)^2+(5)^2 25+25 50

Janu Likki 6 years, 4 months ago

Answer is 50

Ashish Divakar 6 years, 4 months ago

6
  • 2 answers

Janu Likki 6 years, 4 months ago

87 is the answer

Naman Devwani 6 years, 4 months ago

The answer is simple You have square the number seven and add with thirty and eight (7×7)+30+8 49+38 87
  • 1 answers

Gurwinder Singh 6 years, 4 months ago

a1/a2=b1/b2 but not equal to c1 by c2
  • 1 answers

Sia ? 6 years, 4 months ago

0

  • 1 answers

Sia ? 6 years, 4 months ago

We have to express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

For sin A,

By using identity {tex}cosec ^ { 2 } A - \cot ^ { 2 } A = 1{/tex}

{tex}\Rightarrow cosec ^ { 2 } A = 1 + \cot ^ { 2 } A{/tex}

{tex}\Rightarrow \frac { 1 } { \sin ^ { 2 } A } = 1 + \cot ^ { 2 } A{/tex}

{tex}\Rightarrow \sin ^ { 2 } A = \frac { 1 } { 1 + \cot ^ { 2 } A }{/tex}

{tex} \Rightarrow \quad \sin A = \frac { 1 } { \sqrt { 1 + \cot ^ { 2 } A } }{/tex}

For tan A,

{tex} \tan A = \frac { 1 } { \cot A }{/tex}

  • 2 answers

Richhpal Mahala 6 years, 4 months ago

Me tooooo

?Niharika Sharma ? 6 years, 4 months ago

Me too?
  • 1 answers

Surjit Singh Kondal 6 years, 4 months ago

1.5 --rational 1.50550555055550..... irrational
  • 1 answers

Sia ? 6 years, 4 months ago

Given that -5 is the root of {tex}2 x^{2}+p x-15=0{/tex}
Put x = -5 in {tex}2 x^{2}+p x-15=0{/tex} 
{tex}\Rightarrow{/tex} {tex}2(-5)^{2}+p(-5)-15=0{/tex}
{tex}\Rightarrow{/tex} {tex}50-5 p-15=0{/tex}
{tex}\Rightarrow{/tex} {tex}35 - 5p = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}5p = 35 {/tex}
{tex}\therefore{/tex} {tex}p = 7{/tex}
Hence the quadratic equation p {tex}(x^2 + x) + k = 0{/tex} becomes, {tex}7\left(x^{2}+x\right)+k=0{/tex}
{tex}7 x^{2}+7 x+k=0{/tex} 
Here {tex}a = 7,\ b = 7\ and\ c = k{/tex} Given that this quadratic equation has equal roots 
{tex}\therefore{/tex} {tex}b^{2}-4 a c=0{/tex} 
{tex}\Rightarrow{/tex} {tex}7^{2}-4(7)(\mathrm{k})=0{/tex} 
{tex}\Rightarrow{/tex} {tex}49 - 28k = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}49 = 28k {/tex}
{tex}\therefore{/tex} k =  {tex}\frac{49} {28}{/tex} = {tex}\frac{7} {4}{/tex}

  • 3 answers

Amit Kumar 6 years, 4 months ago

Here; 2^x+3^y=17 (i) 2^x+2-3^y+1=5 2^x-3^y+3=5 2^x-3^y=5-3 2^x-3^y=2 (ii) Adding (i) and (ii) to get : 2^x+3^y+2^x-3^y = 17+2 4^x=19 x=19/4 Putting x=19/4 in (i) : 2×19/4 +3^y=17 19/2+3^y=17 3^y=17-19/2 3^y=15/2 y=5/2

Pk . 6 years, 4 months ago

Sorry, but you have to wait tonight i will answer you tommorow at 1 pm

Danish Raza 6 years, 4 months ago

Give me amswer

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App