No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 5 years, 3 months ago

The point P(0,9) is equidistant from the points A(6,5) and B(-4,3).

Step-by-step explanation:

Let the point on y axis is P(0,y) which is equidistant from the points A(6,5) and B(-4,3). The distance between PA is equal to PB such that,

On squaring,

So, the point P(0,9) is equidistant from the points A(6,5) and B(-4,3).

  • 1 answers

Gaurav Seth 5 years, 3 months ago

To prove:

Solution:

Given: The sum of first ‘n’ terms of three AP's are . The ‘first term’ of each is 5 and their common differences are 2, 4 and 6 respectively.  

Formula of summation of an A.P

whereas  = Summation till n terms.

a = First term of sequence

d = Common Difference

Now, using this formula, we get  

Thus, we need to add  to prove that 

                              

Thus, .

Hence proved.

  • 2 answers

Student ✍️✍️✍️ 5 years, 3 months ago

6/2×3=3×3=9

Jai Kansal 5 years, 3 months ago

=6/2 × 3 =18/2 =9
  • 1 answers

Student ✍️✍️✍️ 5 years, 3 months ago

Same question ????
  • 1 answers

Gaurav Seth 5 years, 3 months ago

AAA similarity theorem or criterion:
If the corresponding angles of two triangles are equal, then their corresponding sides are proportional and the triangles are similar




In ΔABC and ΔPQR, ∠A = ∠P , ∠B = ∠Q , and ∠C = ∠R  then  AB PQ =  BC QR =  ACPRand ΔABC ∼ ΔPQR.

Given: In ΔABC and ΔPQR, ∠A = ∠P, ∠B = ∠Q, ∠C = ∠R.

To prove:   AB PQ =  BC QR =  ACPR

Construction : Draw LM such that    PL AB = PM AC .

Proof: In ΔABC and ΔPLM,

AB = PL and AC = PM (By Contruction)

∠BAC = ∠LPM (Given)

∴ ΔABC ≅ ΔPLM (SAS congruence rule)

∠B = ∠L (Corresponding angles of congruent triangles)

Hence ∠B = ∠Q (Given)

∴ ∠L =  ∠Q 

LQ is a transversal to LM and QR.

Hence  ∠L =  ∠Q (Proved)

∴ LM ∥ QR

  PL LQ =  PM MR 

  LQ PL =  MR PM   (Taking reciprocals)

  LQ PL + 1 =  MR PM + 1  (Adding 1 to both sides)

  LQ+PL PL =  MR+PM PM 

  PQ PL =  PR PM

  PQ AB =  PR AC   (AB = PL and AC =PM)

  AB PQ =  AC PR  (Taking Reciprocals) ............... (1)

  AB PQ =  BC QR  

  AB PQ =  AC PR =   BC QR 

∴ ΔABC ~ ΔPQR

  • 1 answers

Yogita Ingle 5 years, 3 months ago

Let a be the amount of air initially Amount of air remaining after 1st pump =a –(a/4)=3a/4

Amount of air remaining after 2nd  pump= (3a/4) – (1/4)(3a/4)=9a/16

Amount of air remaining after 3rd  pump= (9a/16) – (1/4)(9a/16)=27a/64

So the series is like

a,3a/4,9a/4,27a/64……..

Difference Ist and second term=-a/4

Difference between Second and Third term= -3a/16

So difference is not constant

So it is not Arithmetic Progression

  • 1 answers

???????? Soni 5 years, 3 months ago

Fj
  • 1 answers

Amit Kumar Chaurasia 5 years, 3 months ago

1122
  • 1 answers

Rakshitha M 5 years, 3 months ago

Check whether 6n can end with the digit 0 for any natural number n. Ans. If any number ends with the digit 0, it should be divisible by 10. In other words, it will also be divisible by 2 and 5 as  Prime factorisation of  It can be observed that 5 is not in the prime factorisation of. Hence, for any value of n, will not be divisible by 5. Therefore, cannot end with the digit 0 for any natural number n.
  • 1 answers

Gaurav Seth 5 years, 3 months ago

We have a circle of radius 5 cm with a chord of length 8 cm.

We have to find length TP.

We have,

OP=5 cm

PM=4 cm  .......(perpendicular from the centre divides the chord)

OM=3 cm  .......(by using Pythagorean triplet)

Let  and TP be x.

Use trigonometric ratio in the triangle PMO and POT we get,

Therefore, TP =6.66 cm

  • 4 answers

Rudra Pratap Singh 5 years, 3 months ago

3root2

Vishal Kuntal 5 years, 3 months ago

3+2√2-3+√2 = 2√2+√2 = 3√2

Lokesh Mehra 5 years, 3 months ago

3+2√2-3+√2 2√2+√2 2+1(√2) 3√2

Yogita Ingle 5 years, 3 months ago

3+2√2-3+√2

=3-3+2√2+√2

=2√2+√2

= (2+1) √2
= (2+1) √2

  • 1 answers

Yogita Ingle 5 years, 3 months ago

side of cube (a)= 1 cm

volume of cube = a³ = 1 cm³ = 1000 mm³

volume of material remains same

So,

volume of cube = volume of wire

volume of wire =   π r² × h

1000 mm³ = π × (4/2)² × h

h = 1000/[ π × 4]

h = 250/π mm = 25/π cm

 

  • 1 answers

Student ✍️✍️✍️ 5 years, 3 months ago

What is PL is it altitude or something else
  • 1 answers

Namrata Jindal 5 years, 3 months ago

Let the terms be (a-d), a, (a+d) Sum=3a=-3 So a=-1 Now, product = (a+d)a(a-d) = 8 (d-1) (-1) (-1-d) =8 (d-1) (-1-d) =-8 -d^2 +d -d +1=-8 d^2= 9 So d= -3 or 3 So AP will be -1, -4, -7'......... OR AP will be -1, 2,5
  • 1 answers

Amit Kumar Chaurasia 5 years, 3 months ago

Let coins of 50 paise=x coins of Rs 1=y No coins x+y=10-------------(1) Total amount =0.5*x+y=6 or x+2y=12--------------(2)
  • 1 answers

Gaurav Seth 5 years, 3 months ago

Let the numbers be a - d, a, a + d which are in AP.

(a - d) + (a) + (a + d) = 27 .........(1)

(a - d)(a)(a + d) = 405 ..........(2)

(1) => 3a = 27

a = 9

(2) => (a2 - d2)(a) = 405

[(9)2 - d2] (9) = 405

(81 - d2) (9) = 405

729 - 9d2 = 405

9d2 = 729 - 405

9d2 = 324

d2 = 36

d = 6

Now, substitute the values in the 1st equation.

(a-d) = 9 - 6 = 3

a = 9

(a+d) = 9 + 6 = 15

Hence the numbers are 3, 9 and 15.

  • 2 answers

Shivani Chaudhary 5 years, 3 months ago

Write the value of k for which the system of eq x+ y -4=0,2x+ky-3=0 has no sok

Gaurav Seth 5 years, 3 months ago

3x+2y=11

2x+3y=4

by adding them

5x+5y=15

x+y=3

x=3-y

put the value of x

3x+2y=11

3(3-y)+2y=11

9-3y+2y=11

9-y=11

-y=11-9

-y=2

y=-2

put the value of y

x=3-y

x=3-(-2)

x=3+2

x=5

hence x=5 and y=-2

  • 0 answers
  • 1 answers

Mona Singh 5 years, 3 months ago

No answer for such a silly question
  • 1 answers

Yogita Ingle 5 years, 3 months ago

x + y = a + b …(i)

ax – by = a2 – b2…(ii)

To solve these equations, we need to make one of the variables (in both the equations) have same coefficient.

Lets multiply equation (i) by b, so that variable y in both the equations have same coefficient.

Recalling equations (i) & (ii),

x + y = a + b [×b

ax – by = a2 – b2

⇒ bx + ax = ab + a2

⇒ (b + a)x = a(b + a)

⇒ x = a

Substitute x = a in equations (i)/(ii), as per convenience of solving.

Thus, substituting in equation (i), we get

a + y = a + b

⇒ y = b

Hence, we have x = a and y = b.

  • 0 answers
  • 1 answers

Manju Angadi 5 years, 3 months ago

L. C. M of128 & 68 >128=2×2×2×2×2×2 >682=2×2×17 :-L. C. M. is 2176 L. C. M×H. C. F= products of two numbers 2176×128m-15×68=128×68 >2176×128m-15×68=8704 >128m-15×68=8704÷2176 >128m-15=4÷68 >128m=0.05882352941+15 >128m=15.05882352941 >m=15.05882352941÷128 Ans:-m=0.11764705882
  • 1 answers

Nivi :) 5 years, 3 months ago

Let the angle be x  other angle (it's supplement) =( 180-x) x+18= (180-x) 2x = 162 x = 162/2 = 81  other angle(its supplement) = 180- x => 180-81 => 99
  • 1 answers

Himanshu Chaudhary 5 years, 3 months ago

Suzmvggm
  • 1 answers

Amit Kumar Chaurasia 5 years, 3 months ago

3. If  calculate  and  Ans. Given: A triangle ABC in which B =   Let BC =  and AC =  Then, Using Pythagoras theorem, AB =  =  =  =   
  • 1 answers

Rudra Pratap Singh 5 years, 3 months ago

42,38,34,30,26,22
  • 1 answers

Gaurav Seth 5 years, 3 months ago

Solution:

an = 2n + 3

n = 1

an = 2n + 3
a1 = 2(1) + 3
a1 = 2 + 3
a1 = 5

n = 2

an = 2n + 3
a2 = 2(2) + 3
a2 = 4 + 3
a2 = 7

n = 3

an = 2n + 3
a3 = 2(3) + 3
a3 = 6 + 3
a3 = 9

n = 4

an = 2n + 3
a4 = 2(4) + 3
a4 = 8 + 3
a4 = 11

  • 1 answers

Prajwal Mehra 5 years, 3 months ago

A²b²x² - (4b⁴ - 3a⁴)x - 12a²b² = 0 ⇒a²b²x² - 4b⁴x + 3a⁴x - 12a²b² = 0 ⇒b²x(a²x - 4b²) + 3a²(a²x - 4b²) = 0 ⇒(b²x + 3a²)(a²x - 4b²) = 0 ⇒x = 4b²/a², -3a²/b² now, using quadratic formula , x = {(4b⁴ - 3b⁴) ± √{(4b⁴ -3a⁴)²+48(a²b²)²}}/2a²b² = {(4b⁴ - 3a⁴) ± √{(4b⁴ + 3a⁴)²}}/2a²b² [ use formula, (x-y)²+4xy=(x+y)²] = {4b⁴ - 3a⁴ ± (4b⁴ + 3a⁴)}/2a²b² = 4b²/a², -3a²/b² LE BHAI

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App