No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 5 answers

? Yang ? 5 years, 2 months ago

"4". HOPE IT HELPS YOU?✌

Rakshita Upadhyay 5 years, 2 months ago

4

Tejasvini S 5 years, 2 months ago

4

Saurabh ???? 5 years, 2 months ago

4

Shahbaj Ghaffar 5 years, 2 months ago

4
  • 3 answers

Anshuman Omm 5 years, 2 months ago

=sec(90-31)- cosec31 =cosec 31-cosec 31 =0

Renu Chourasia 5 years, 2 months ago

0

Shahbaj Ghaffar 5 years, 2 months ago

0
  • 2 answers

H M Madan 5 years, 2 months ago

See text book

Nitin Kumar 5 years, 2 months ago

Base proportional theorem
  • 1 answers

Tejasvini S 5 years, 2 months ago

a+b=7
  • 1 answers

Ajin Ajin 5 years, 2 months ago

Your answer : Mode-The most repetitive number! - Median:The number in the MIDDLE when they are IN ORDER! - Mean- The AVERAGE OF ALL NUMBERS: You add up all the numbers then you divide it by the TOTAL NUMBER of NUMBERS!
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 4 answers

Subhalaxmi P 5 years, 2 months ago

Linear Equations One Variableax+b=0a≠0 and a&b are real numbersTwo variableax+by+c = 0a≠0 & b≠0 and a,b & c are real numbersThree Variableax+by+cz+d=0a≠0 , b≠0, c≠0 and a,b,c,d are real numbers Pair of Linear Equations in two variables: a1x+b1y+c1=0 a2x+b2y+c2=0 Where a1, b1, c1, a2, b2, and c2 are all real numbers and a12+b12 ≠ 0 & a22 + b22 ≠ 0 It should be noted that linear equations in two variables can also be represented in graphical form. Algebra or Algebraic Equations The standard form of a Quadratic Equation is: ax2+bx+c=0 where a ≠ 0 And x = [-b ± √(b2 – 4ac)]/2a Algebraic formulas: (a+b)2 = a2 + b2 + 2ab (a-b)2 = a2 + b2 – 2ab (a+b) (a-b) = a2 – b2 (x + a)(x + b) = x2 + (a + b)x + ab (x + a)(x – b) = x2 + (a – b)x – ab (x – a)(x + b) = x2 + (b – a)x – ab (x – a)(x – b) = x2 – (a + b)x + ab (a + b)3 = a3 + b3 + 3ab(a + b) (a – b)3 = a3 – b3 – 3ab(a – b) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz (x + y – z)2 = x2 + y2 + z2 + 2xy – 2yz – 2xz (x – y + z)2 = x2 + y2 + z2 – 2xy – 2yz + 2xz (x – y – z)2 = x2 + y2 + z2 – 2xy + 2yz – 2xz x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz -xz) x2 + y2 =½ [(x + y)2 + (x – y)2] (x + a) (x + b) (x + c) = x3 + (a + b +c)x2 + (ab + bc + ca)x + abc x3 + y3= (x + y) (x2 – xy + y2) x3 – y3 = (x – y) (x2 + xy + y2) x2 + y2 + z2 -xy – yz – zx = ½ [(x-y)2 + (y-z)2 + (z-x)2] Click here to check all algebra formulas Basic formulas for powers pm x pn = pm+n {pm}⁄{pn} = pm-n (pm)n = pmn p-m = 1/pm p1 = p P0 = 1 Arithmetic Progression(AP) Formulas If a1, a2, a3, a4, a5, a6,… are the terms of AP and d is the common difference between each term, then we can write the sequence as; a, a+d, a+2d, a+3d, a+4d, a+5d,….,nth term… where a is the first term. Now, nth term for arithmetic progression is given as; nth term = a + (n-1) d Sum of the first n terms in Arithmetic Progression; Sn = n/2 [2a + (n-1) d] Trigonometry Formulas For Class 10 Trigonometry maths formulas for Class 10 cover three major functions Sine, Cosine and Tangent for a right-angle triangle. Also, in trigonometry, the functions sec, cosec and cot formulas can be derived with the help of sin, cos and tan formulas. Let a right-angled triangle ABC is right-angled at point B and have ∠θ. Sin θ= SideoppositetoangleθHypotenuse=PerpendicularHypotenuse = P/H Cos θ = AdjacentsidetoangleθHypotenuse = BaseHypotenuse = B/H Tan θ = SideoppositetoangleθAdjacentsidetoangleθ = P/B Sec θ = 1cosθ Cot θ = 1tanθ Cosec θ = 1sinθ Tan θ = SinθCosθ Trigonometry Table: Angle0°30°45°60°90°Sinθ01/21/√2√3/21Cosθ1√3/21/√2½0Tanθ01/√31√3UndefinedCotθUndefined√311/√30Secθ12/√3√22UndefinedCosecθUndefined2√22/√31 Swipe left Other Trigonometric formulas: sin(90° – θ) = cos θ cos(90° – θ) = sin θ tan(90° – θ) = cot θ cot(90° – θ) = tan θ sec(90° – θ) = cosecθ cosec(90° – θ) = secθ sin2θ + cos2 θ = 1 sec2 θ = 1 + tan2θ for 0° ≤ θ < 90° Cosec2 θ = 1 + cot2 θ for 0° ≤ θ ≤ 90° Get complete Trigonometry Formulas list here Circles Formulas For Class 10 Circumference of the circle = 2 π r Area of the circle = π r2 Area of the sector of angle θ = (θ/360) × π r2 Length of an arc of a sector of angle θ = (θ/360) × 2 π r (r = radius of the circle) Surface Area and Volumes Formulas For Class 10 The common formulas from the surface area and volumes chapter in 10th class include the following: Sphere Formulas Diameter of sphere2rSurface area of sphere4 π r2Volume of Sphere4/3 π r3 Cylinder Formulas Curved surface area of Cylinder2 πrhArea of two circular bases2 πr2Total surface area of CylinderCircumference of Cylinder + Curved surface area of Cylinder = 2 πrh + 2 πr2Volume of Cylinderπ r2 h Cone Formulas Slant height of conel = √(r2 + h2)Curved surface area of coneπrlTotal surface area of coneπr (l + r)Volume of cone⅓ π r2 h Cuboid Formulas Perimeter of cuboid4(l + b +h)Length of the longest diagonal of a cuboid√(l2 + b2 + h2)Total surface area of cuboid2(l×b + b×h + l×h)Volume of Cuboidl × b × h Here, l = length, b = breadth and h = height In case of Cube, put l = b = h = a, as cube all its sides of equal length, to find the surface area and volumes. Statistics Formulas for Class 10 In class 10, the chapter statistics mostly deals with finding the mean, median and mode of grouped data. (I) The mean of the grouped data can be found by 3 methods. Direct Method: x̅ = ∑ni=1fixi∑ni=1fi, where ∑fi xi is the sum of observations from value i = 1 to n And ∑fi is the number of observations from value i = 1 to n Assumed mean method : x̅ = a+∑ni=1fidi∑ni=1fi Step deviation method : x̅ = a+∑ni=1fiui∑ni=1fi×h (II) The mode of grouped data: Mode = l+f1–f02f1–f0–f2×h (III) The median for a grouped data: Median = l+n2–cff×h

Vicky Kumar 5 years, 2 months ago

Linear Equations One Variableax+b=0a≠0 and a&b are real numbersTwo variableax+by+c = 0a≠0 & b≠0 and a,b & c are real numbersThree Variableax+by+cz+d=0a≠0 , b≠0, c≠0 and a,b,c,d are real numbers Pair of Linear Equations in two variables: a1x+b1y+c1=0 a2x+b2y+c2=0 Where a1, b1, c1, a2, b2, and c2 are all real numbers and a12+b12 ≠ 0 & a22 + b22 ≠ 0 It should be noted that linear equations in two variables can also be represented in graphical form. Algebra or Algebraic Equations The standard form of a Quadratic Equation is: ax2+bx+c=0 where a ≠ 0 And x = [-b ± √(b2 – 4ac)]/2a Algebraic formulas: (a+b)2 = a2 + b2 + 2ab (a-b)2 = a2 + b2 – 2ab (a+b) (a-b) = a2 – b2 (x + a)(x + b) = x2 + (a + b)x + ab (x + a)(x – b) = x2 + (a – b)x – ab (x – a)(x + b) = x2 + (b – a)x – ab (x – a)(x – b) = x2 – (a + b)x + ab (a + b)3 = a3 + b3 + 3ab(a + b) (a – b)3 = a3 – b3 – 3ab(a – b) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz (x + y – z)2 = x2 + y2 + z2 + 2xy – 2yz – 2xz (x – y + z)2 = x2 + y2 + z2 – 2xy – 2yz + 2xz (x – y – z)2 = x2 + y2 + z2 – 2xy + 2yz – 2xz x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz -xz) x2 + y2 =½ [(x + y)2 + (x – y)2] (x + a) (x + b) (x + c) = x3 + (a + b +c)x2 + (ab + bc + ca)x + abc x3 + y3= (x + y) (x2 – xy + y2) x3 – y3 = (x – y) (x2 + xy + y2) x2 + y2 + z2 -xy – yz – zx = ½ [(x-y)2 + (y-z)2 + (z-x)2] Click here to check all algebra formulas Basic formulas for powers pm x pn = pm+n {pm}⁄{pn} = pm-n (pm)n = pmn p-m = 1/pm p1 = p P0 = 1 Arithmetic Progression(AP) Formulas If a1, a2, a3, a4, a5, a6,… are the terms of AP and d is the common difference between each term, then we can write the sequence as; a, a+d, a+2d, a+3d, a+4d, a+5d,….,nth term… where a is the first term. Now, nth term for arithmetic progression is given as; nth term = a + (n-1) d Sum of the first n terms in Arithmetic Progression; Sn = n/2 [2a + (n-1) d] Trigonometry Formulas For Class 10 Trigonometry maths formulas for Class 10 cover three major functions Sine, Cosine and Tangent for a right-angle triangle. Also, in trigonometry, the functions sec, cosec and cot formulas can be derived with the help of sin, cos and tan formulas. Let a right-angled triangle ABC is right-angled at point B and have ∠θ. Sin θ= SideoppositetoangleθHypotenuse=PerpendicularHypotenuse = P/H Cos θ = AdjacentsidetoangleθHypotenuse = BaseHypotenuse = B/H Tan θ = SideoppositetoangleθAdjacentsidetoangleθ = P/B Sec θ = 1cosθ Cot θ = 1tanθ Cosec θ = 1sinθ Tan θ = SinθCosθ Trigonometry Table: Angle0°30°45°60°90°Sinθ01/21/√2√3/21Cosθ1√3/21/√2½0Tanθ01/√31√3UndefinedCotθUndefined√311/√30Secθ12/√3√22UndefinedCosecθUndefined2√22/√31 Swipe left Other Trigonometric formulas: sin(90° – θ) = cos θ cos(90° – θ) = sin θ tan(90° – θ) = cot θ cot(90° – θ) = tan θ sec(90° – θ) = cosecθ cosec(90° – θ) = secθ sin2θ + cos2 θ = 1 sec2 θ = 1 + tan2θ for 0° ≤ θ < 90° Cosec2 θ = 1 + cot2 θ for 0° ≤ θ ≤ 90° Get complete Trigonometry Formulas list here Circles Formulas For Class 10 Circumference of the circle = 2 π r Area of the circle = π r2 Area of the sector of angle θ = (θ/360) × π r2 Length of an arc of a sector of angle θ = (θ/360) × 2 π r (r = radius of the circle) Surface Area and Volumes Formulas For Class 10 The common formulas from the surface area and volumes chapter in 10th class include the following: Sphere Formulas Diameter of sphere2rSurface area of sphere4 π r2Volume of Sphere4/3 π r3 Cylinder Formulas Curved surface area of Cylinder2 πrhArea of two circular bases2 πr2Total surface area of CylinderCircumference of Cylinder + Curved surface area of Cylinder = 2 πrh + 2 πr2Volume of Cylinderπ r2 h Cone Formulas Slant height of conel = √(r2 + h2)Curved surface area of coneπrlTotal surface area of coneπr (l + r)Volume of cone⅓ π r2 h Cuboid Formulas Perimeter of cuboid4(l + b +h)Length of the longest diagonal of a cuboid√(l2 + b2 + h2)Total surface area of cuboid2(l×b + b×h + l×h)Volume of Cuboidl × b × h Here, l = length, b = breadth and h = height In case of Cube, put l = b = h = a, as cube all its sides of equal length, to find the surface area and volumes. Statistics Formulas for Class 10 In class 10, the chapter statistics mostly deals with finding the mean, median and mode of grouped data. (I) The mean of the grouped data can be found by 3 methods. Direct Method: x̅ = ∑ni=1fixi∑ni=1fi, where ∑fi xi is the sum of observations from value i = 1 to n And ∑fi is the number of observations from value i = 1 to n Assumed mean method : x̅ = a+∑ni=1fidi∑ni=1fi Step deviation method : x̅ = a+∑ni=1fiui∑ni=1fi×h (II) The mode of grouped data: Mode = l+f1–f02f1–f0–f2×h (III) The median for a grouped data: Median = l+n2–cff×h

Gopal Chaudhary 5 years, 2 months ago

Chapter ya question ke photo bhejo thabhi to bta payenge

Rishika Sharma 5 years, 2 months ago

Konsa ch ka ek ek kr k pucho aise to aap v confused hoge aur hm sb v
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 2 answers

Rishika Sharma 5 years, 2 months ago

Solution: Tan theta =15/8(given) We know that, Tan theta=p/b Now, we use Pythagoras theorem So, (Hypo)²=(perpendicular)²+(base)² Therefore, H²=(15)²+(8)² =225+64 = 289 H=√289 = 17 Hence, Sin theta=15/17 Cos theta=8/17 Tan theta=15/8 Cot theta=8/15 Cosec theta=17/15 Sec theta =17/8 I hape it is helpful for you

Sonam Kumari Paswan 5 years, 2 months ago

ch 10 ex 10 Question number 3 please help me
  • 5 answers

Neha Kakkar ?? 5 years, 2 months ago

Mathematics class 10.

Vicky Kumar 5 years, 2 months ago

Maths solver

Helper . 5 years, 2 months ago

Maths teacher and maths padho sir

Aayush Raj 5 years, 2 months ago

Green board

Aditya Srivastav 5 years, 2 months ago

Green board and Mathematics class 10.
  • 3 answers

Palak Tanwani 5 years, 2 months ago

How do we get the value of p and q

Yogita Ingle 5 years, 2 months ago

 272 = 2 × 2 × 2 × 2 × 17

 148 = 2 × 2 × 37

Therefore ,

HCF ( 272 , 148 ) = 2 × 2 = 4

 By using Euclid's algorithm :

 Since , 272 > 148 , we apply the division lemma to 272 and 148 , to get

272 = 148 × 1 + 124

 Since the remainder 124 ≠ 0 , we apply the division lemma to 148 and 124 , to get

148 = 124 × 1 + 24

 We consider the new divisor 124 and the new remainder 24 , and apply the division lemma to get

124 = 24 × 5 + 4

 We consider the new divisor 24 and the new remainder 4 , and apply the division lemma to get

24 = 4 × 6 + 0

 The remainder has now become zero , so our procedure stops , since the divisor at this stage is 4 , the HCF of 272 and 148 is 4

Aditya Kumar 5 years, 2 months ago

P=(6) , q=(-11)
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 1 answers

Rohit Kumar 5 years, 2 months ago

Given:- A right triangle ABC right angled at B. To prove:- AC2=AB2+BC2 Construction:- Draw BD⊥AC Proof:- In △ABC and △ABD ∠ABC=∠ADB(Each 90°) ∠A=∠A(Common) ∴△ABC∼△ABD(By AA) ACAB​=ABAD​(∵Sides of similar triangles are proportional) ⇒AB2=AD⋅AC.....(1) Similarly, in △ABC and △BCD ∠ABC=∠BDC(Each 90°) ∠C=∠C(Common) ∴△ABC∼△BCD(By AA) ∴BCDC​=ACBC​ ⇒BC2=DC⋅AC.....(2) Adding equation (1)&(2), we have AB2+BC2=AD⋅AC+DC.AC ⇒AB2+BC2=AC(AD+DC) ⇒AB2+BC2=AC2 Hence proved. 
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?
  • 1 answers

Yogita Ingle 5 years, 2 months ago

by joining B to D,you will get two Triangles ABD and BCD the area of triangle A b d

1/2[-5(-5-5)+(-4)(5-7)+4(7+5)]=0

1[50+8+48]0×2

=106/2

=53square.units

also the area of triangle BCD

=1/2[-4(-6-5)-1(5+5)+4(-5+6)]

=1/2[44-10+4]

=19 square.units

area of triangle ABC + area of triangle BCD

so the area of quadrilateral ABCD =53+19=72square.units

  • 2 answers

Yogita Ingle 5 years, 2 months ago

In the given A.P ;
a = 21
d = 42-21 = 21
l = 210
n = ?
l = a +(n-1)d
210 = 21+(n-1)21
n-1 = 189/21
n = 9+1
n = 10
hence 210 is the 10th term of given A.P

Saurabh ???? 5 years, 2 months ago

I think about it is not good question. Something is wrong in this question
  • 1 answers

Riya Philip 5 years, 2 months ago

Join Betternation.xyz This is a site where u can have a lot of friends and fun ? ?

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App