No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 5 years ago

If AOBC is a rectangle whose three vertices are A(0, 3), O(0, 0) and B(5, 0), then the length of its diagonal is

Solution:

Now, length of the diagonal AB = Distance between the points A(0, 3) and B(5, 0).

 

∴ Distance between the points (x,, y,) and (x , y ),

Hence, the required length of its diagonal is √34.

  • 1 answers

Gaurav Seth 5 years, 1 month ago

Steps to Create Trigonometric Table:

Step 1: Draw a tabular column with the required angles such as 0, 30o, 45o, 60o, 90o, 180o, 270o, 360o in the top row and all 6 trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent in first column.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

 

  • 0 answers
  • 2 answers

Yogita Ingle 5 years, 1 month ago

Atoria Atoria Lyngthong 5 years, 1 month ago

Circumference of the circle exceed the diameterby 16.8. 2pir
  • 3 answers

Akásh Pànchàl 5 years, 1 month ago

a=2 d=4 n=10 a^n=a+(n-1)d

Preeti A 5 years, 1 month ago

a=2 d=6-2 d=4 an=a+(n-1)*d a10=2+(10-1)*4 a10=2+9*4 a10=2+36 a10=38

D.R.K Mishra 5 years, 1 month ago

A.P:- 2,6,10,14,18,22,26,30,34,38.
  • 1 answers

Anuj Kumar 5 years, 1 month ago

???
  • 4 answers

Rohan £#@#÷×¶¥€~ 5 years, 1 month ago

l^2 =h^2 +r^2

Khushi Shama 5 years, 1 month ago

L=√r2+h2

Adarsh Jaiswal 5 years, 1 month ago

Answer - under root h square minus r square

Himanshu Sharma 5 years, 1 month ago

L ka square is equal to under root r ka square plus h ka square
  • 1 answers

Gaurav Seth 5 years ago

The value of  is 

Step-by-step explanation:

Given,

 is trapezium where diagonals intersect at ,,, and 

From figure,

 and 

  •  (vertically opposite angle)
  •  ( and alternate angle)
  •   ( and alternate angle)  

∴ 

So, We can write,

 

Plug the value in above equation,

⇒ 

  • 3 answers

Honey Jain 5 years, 1 month ago

ax2+bx+c=0, a is not=to 0

Devansh Goal 5 years, 1 month ago

ax^2+ bx + c = 0

Yogita Ingle 5 years, 1 month ago

The standard form of a quadratic equation is ax2+bx+c=0, where a,b and c are real numbers and a≠0.
‘a’ is the coefficient of x2. It is called the quadratic coefficient. ‘b’ is the coefficient of x. It is called the linear coefficient. ‘c’ is the constant term.

  • 2 answers

Honey Jain 5 years, 1 month ago

2 × 2 × 3 × 13 are the factor of 156.
2^2*3*13
  • 1 answers

Tanu Man 5 years, 1 month ago

Write complete question ?? plz??
  • 2 answers

S. Yarthishaa 5 years, 1 month ago

Tan 60degree is equal to root3
1.73205080757
  • 1 answers

Prakash Samrat 5 years, 1 month ago

X=3,Y=0
  • 5 answers

Tanu Man 5 years, 1 month ago

NCERT Exemplar
Together with

Honey Jain 5 years, 1 month ago

U can download ncert class 10 book offine all books are which u want
S Chand.. Pearson etc...

Rahul Yadav 5 years, 1 month ago

Rd Sharma ,Rs Aggrawal,
  • 1 answers

Ambika Ambika 5 years, 1 month ago

Solution :- (i) given that a=5 , d=3, an=50 we know nth term of an AP, an= a+(n-1)d =50=5+(n-1)3 =50-5=(n-1)3 =45=(n-1)3 =45/3=n-1 =15=n-1 =n=15+1 =n=16 Now,sum of n terms, Sn=n/2 [a+an] Sn=16/2 [5+50] sn=16/2 ×55 Sn=8×55=440 . (ii) given that,a=7,a13 =35 we know nth term of an AP, an =a+n-1 =a13=7+(13-1)d =35=7=12d =35-7=12d =28=12d =d=28/12=7/3 Now,sum of n terms Sn =n/2 [a+an] S13=13/2 [7+25] S13=13/2×42 S13=273. (iv) given that a3=15, S10 =125 we know, nth term of an AP, An=a+(n-1) = a3=a+(3-1)d--------------> (1) Sum of n terms Sn=n/2 [2a+(n-1)d] =S10=10/2 [2a+(10-1)d] =S10=5(2a+9d)-------------> (2) multiplying equ.(1) by (2) we get 30=2a+4d ----------> (3) Subtracting equ.(2) from equ (3) we get 2a+4d=30 2a+9d=25 (-) (-) _____________ -5d =5 d=___5__= -1 -5 subtracting the value of d in the equ (1)we get 15=a+2(-1) =15=a+2=a =15+2=a =a=17 Therefore a10 =a+(10-1)d a10=17+(10-1)(-1) a10=17+(10-1)(-1) a10=17+9×(-1) a10=17-9 a10=8 thus , d= -1 and a10=8 (v) given that, d=5, Sq=75 we know sum of n terms, Sn=n/2 [2a+(n-1)d] = Sq=9/2 [2a+(9-1)] =75=9/2 [2a+40] =75×2=9[2a+40] =150×18a+360 =18a=150-360 =18a= -210 =a= -210/18=-35/3 we know, an =a+(9-1)d a9=-35/3 +(9-1)5 a9= -35/3 +40 a9= -35+120/3 =85/3 thus a=-35/3 and a9=85/3 (vi) given a=2, d=8, Sn=90 we know,sum of n terms,Sn =n/2 [2a+(n-1)] =90=n/2 [2 (2)+(n-1)4] =90= n/2×2 [2+(n-1)4] =90=n [2+(4n-4] =90= n[4n-2] =90=4n^ - 2n =4n^-2n-90=0 =2n^-n-45=0 =2n^-10n+9n-45 (splitting the middle term) =2n(n-5)+9(n-5)=0 =(n-5)(Zn+9)=0 =n-5=0 we know nth term of an AP = an =an=2+(5-1)8 =an=2+2 4×8 =an= 2+32 =an=34 thus, n=5 and an=34 (viii) given that an=4,d=2, Sn=-14 we know nth term of an AP,an =an=a+(n-1)2 =4=a+2n-2 =6=a+2n =a=6-2n ------------>(1) we know sum of n terms Sn=n/2[2a+(n-1)] = -14=n/2×2[a+(n-1)] = -14=n[a+(n-1)] --------------> subtracting equ (1) in equ.(2) we get -14= [6-2n+n-1] = -14=n [5-n] = -14=5n-n2 =n2-5n-14=0 =n2-7n +2n-14=0 =n(n-7)+2 (n-7)=0 =(n-7)(n+2)=0 =n-7=0 =n=7 subtracting the value of'n' in the equ (1)we get =a=6-2(7) =a=6-14 =a= -8 thus n=7 and a= -8 (ix) given that a=3, n=8 and s=192 we know the sum of n terms of an AP Sn= n/2[a+an] =192=8/2 [3+an] =192=8/2[3+an] =192/4=[3+an] =192/4=3+an =48=3+an =an=48-3 =an=45 we know nth term of an AP an=a+(n-1)d =45=3+(8-1)d =45=7d =d=6 thus d=6
  • 1 answers

Sia ? 4 years, 7 months ago

  1. One point
    Circle is the locus of points equidistant from a given point, the center of the circle, and nd Tangent is the line which intersect circle at one point only
  2. Secant
    A line which intersect circle in two points is called a chord if this line passes through center then it is called secant. (Points are A and B)
  3. Two
    As circle has infinite points, so there will be infinite tangents can be drawn on these points which touches at only one point. (P and Q)
    So there will be infinite pairs of tangents which are parallel.
  4. Point of Contact
    The common point of a tangent to a circle and the circle is called point of contact. (P or Q in the given figure)
  • 1 answers

Rahul Yadav 5 years, 1 month ago

It is removed from shllybus
  • 2 answers

Siddharth Avhad 5 years, 1 month ago

#ß$%&--JJ hu v C

Siddharth Avhad 5 years, 1 month ago

#ß$%&--JJ hu v C
  • 1 answers

Siddharth Avhad 5 years, 1 month ago

Giorgi
  • 1 answers

Gaurav Seth 5 years, 1 month ago

p[a+(p−1)a]=q[a+(q−1)d]
ora(p−q)+(p2−q2)d+(q−p)d=0
ora(p−a)+(p+a)(p−q)−(p−q)d=0
ora+(p+q−1)d=0
This is the (p+q) th term.

  • 1 answers

Anil Tharkar 5 years, 1 month ago

Let 'a' be the first term and 'd' be common difference of the A.P ⇒Tm​=a+(m−1)d=n⇒a−d=n−md...(1) and Tn​=a+(n−1)d=m⇒a−d=m−nd..(2) Using (1) and (2) we get, d=−1 and a=n+m−1 ∴Tp​=a+(p−1)=n+m−1+(p−1)(−1)=n+m−p Hence, option 'A' is correct.
  • 1 answers

Gaurav Seth 5 years, 1 month ago

Given zeroes,
5+√2 and 5-√2
Sum of the zeroes=5+√2+5-√2
Sum of the zeroes=10
Product of zeroes=(5+√2)(5-√2)
Product of zeroes=25-2=23
We know that quadratic polynomial is in the form of,
=k{x²-(sum of zeroes)x+product of zeroes}
By putting required values we get,
=k{x²-10x+23}

=x²-10x+23

Hence x²-10x+23 is the required polynomial.

 

Or

So, f(x) = k {x2 - 10x + 23}, where, k is any non-zero real number.

  • 0 answers
  • 2 answers

Prachi Jain 5 years, 1 month ago

510 = 92 x 5 + 50 92 = 50 x 1 + 42 50 = 42 x 1 + 8 42 = 8 x 5 + 2 8 = 2 x 4 + 0 ∴ HCF of 510 and 92 = 2 Product of two numbers = Product of their LCM and HCF 510 x 92 = 2 x LCM LCM = (510 x 92) / 2         = 23460 ∴ LCM of 510 and 92 = 23460.

Yogita Ingle 5 years, 1 month ago

510 = 92 x 5 + 50
92 = 50 x 1 + 42
50 = 42 x 1 + 8
42 = 8 x 5 + 2
8 = 2 x 4 + 0

∴ HCF of 510 and 92 = 2

Product of two numbers = Product of their LCM and HCF

510 x 92 = 2 x LCM

LCM = (510 x 92) / 2

        = 23460

∴ LCM of 510 and 92 = 23460.

  • 1 answers

Yogita Ingle 5 years, 1 month ago

510 = 92 x 5 + 50
92 = 50 x 1 + 42
50 = 42 x 1 + 8
42 = 8 x 5 + 2
8 = 2 x 4 + 0

∴ HCF of 510 and 92 = 2

Product of two numbers = Product of their LCM and HCF

510 x 92 = 2 x LCM

LCM = (510 x 92) / 2

        = 23460

∴ LCM of 510 and 92 = 23460.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App