No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Cutiepie Pravleen 7 years, 9 months ago

Hii
  • 4 answers

Blocked Mahak Yadav 7 years, 9 months ago

Id

Virat Yadav 7 years, 9 months ago

I also .....

Cutiepie Pravleen 7 years, 9 months ago

Me

Blocked Mahak Yadav 7 years, 9 months ago

Sorry in brainly
  • 1 answers

Ricky Arora 7 years, 9 months ago

Ok
  • 5 answers

Mr Lovely 7 years, 9 months ago

Hii..phchana

Naman Cool 7 years, 9 months ago

Hlw

Harshit Singhal 7 years, 9 months ago

Heloo

Bidisha Das 7 years, 9 months ago

Hiiii

Cutiepie Pravleen 7 years, 9 months ago

Hii
  • 0 answers
  • 5 answers

Raman Jot 7 years, 9 months ago

Nahi

Deepanshi Lovely 7 years, 9 months ago

Tumhari hi galti hoo gi

Apurvi Apurvi 7 years, 9 months ago

Wah wah kya bat hai ???

Naman Cool 7 years, 9 months ago

Why...?

Harshit Singhal 7 years, 9 months ago

So sad bro
  • 1 answers

Lasya Mnr 7 years, 9 months ago

Tan theta +1/tantheta=2 tan^2theta+1=2tantheta Tan^2theta+1-2tan theta=0 (Tan-1)^2 Tantheta-1=0 Tantheta=1 So,cot theta =1 bcoz,reciprocal Cottheta =1 tan^7theta +cot^7theta Substitute 1in tan and cot we get answer as 2
  • 1 answers

Sia ? 6 years, 5 months ago


{tex}\frac { A X } { X B } = \frac { 3 } { 4 } ....(i) {/tex} 
{tex}\frac{AY}{CY}=\frac{5}{9} ....(ii){/tex}
From eqn (i) and (ii)
{tex}\frac{AX}{XB} ≠ \frac{AY}{YC}{/tex}
So XY and BC are not parallel

  • 3 answers

Swapnil Das 7 years, 9 months ago

LSA - 4l2

C C 7 years, 9 months ago

Lateral 4a²

C C 7 years, 9 months ago

Total surface area 6a²
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question,we have the following information.

Water flow in 1 hr = Area of cross-section {tex}\times{/tex} Speed of water

{tex}= 5 \cdot 4 \times 1 \cdot 8 \times 25000 \mathrm { m } ^ { 3 }{/tex}=54×18×250

 Water flow  in 40  minutes

{tex}= 54 \times 6 \times 500 \mathrm { m } ^ { 3 }{/tex}

Irrigated area {tex}\times \frac { 10 } { 100 } = 54 \times 6 \times 500{/tex}

Irrigated area {tex}= 54 \times 6 \times 500 \times 10{/tex}

{tex}= 1620000 \mathrm { m } ^ { 2}{/tex}

  • 4 answers

Ayush Pandey 7 years, 9 months ago

Factorisation method by using mind And Quadratic formula by using mathematical calculation

Naman Cool 7 years, 9 months ago

Quadratic formula

C C 7 years, 9 months ago

Factorization

Apeksha Vashistha 7 years, 9 months ago

Quadratic formula
  • 2 answers

Naman Cool 7 years, 9 months ago

Dso

Ricky Arora 7 years, 9 months ago

Bolo question
  • 2 answers

Tushar Yadav 7 years, 9 months ago

Ratio of perimeter=Ratio of side=15/24 =5/8 Therefore,ratio of area = 5×5/8×8 = 25/64(By area ratio theorm)

Jyoti Vaibhaw 7 years, 9 months ago

225/576
  • 3 answers

Vikram Viku 7 years, 9 months ago

Hii

Deepanshi Lovely 7 years, 9 months ago

Hii best friend

Swaggy Harshit 7 years, 9 months ago

Tum bs iise hi yd krlo??
  • 1 answers

Satyam Shandhilya 7 years, 9 months ago

X = y--3 pehli eq aur dusri x/y--1=1/15 isse solve kar doo fraction aa jayenge aur mujhe btana aaya ki nhi okk good luck
  • 2 answers

Vaishnavi Kumari 7 years, 9 months ago

Thanks satyam..

Satyam Shandhilya 7 years, 9 months ago

Bhai point maan le (x,0) aur iss point ko in dono points ke equal rakh de aur distance formula lga mein kariyo ye sab
  • 1 answers

Sia ? 6 years, 4 months ago

Let the number of sides of polygon be The interior angles of the polygon form an A.P.

Here, a = 120o and d = 5o

Since Sum of interior angles of a polygon with n sides is {tex}( n - 2 ) \times 180 ^ { \circ }{/tex}

{tex}\therefore \mathrm { S } _ { n } = ( n - 2 ) \times 180 ^ { \circ }{/tex}

{tex}\Rightarrow \frac { n } { 2 } [ 2 \times 120 + ( n - 1 ) \times 5 ] = 180 n - 360{/tex}

{tex}\Rightarrow 120 n + \frac { 5 n ^ { 2 } - 5 n } { 2 } = 180 n - 360{/tex}

{tex}\Rightarrow{/tex} 240n + 5n2 - 5n = 360n - 720

{tex}\Rightarrow{/tex} 5n2 - 125n + 720 = 0

divide by 5, we get 

{tex}\Rightarrow{/tex} n2 - 25n + 144 = 0

{tex}\Rightarrow{/tex} (n - 16) (n - 9) = 0 

{tex}\Rightarrow{/tex} n = 16 or n = 9 

But n = 16 not possible because a16 = a + 15d = 120 + 15 {tex}\times{/tex} 5 = 195o > 180o

Therefore, number of sides of the polygon are 9.

  • 1 answers

Nancy Rajput 7 years, 9 months ago

I have
  • 2 answers

Shivam Jaiswal 7 years, 9 months ago

In place of 0.48 ot will be 0.40

Prateek Chawla 7 years, 9 months ago

As p(e) = 1-p(not e)so 0.48 should be 0.4
  • 0 answers
  • 1 answers

Deepali Bhardwaj 7 years, 9 months ago

Trignometry m formulas are must...bs inki aada ghnta likh k dekho apne aap yd hoge aur.....inki ncert exrecise aap dekh k hi practice kro do teen br m practice ho jyegi aur pir easy lgege...ye mera khud ka experience h...isliye shre kr ri hu..kuch time pele tk to trigo sir p se jati thi bt ab i can do very easily...i mnt a topper bt..trigo is good...must try this once do deen m chnge dikhege...and jldi try kro...becoz exms are coming...??
  • 1 answers

Varshitha Jadhav 7 years, 9 months ago

x-1whole square
  • 1 answers

Armaan D 7 years, 9 months ago

x2-2x-8
  • 1 answers

Sia ? 6 years, 4 months ago

Lets suppose there are (2n + 1) stones. Clearly, one stone lies in the middle and n stones on each side of it in a row. Let P be the mid-stone and let A and B be the end stones on the left and right of P respectively.

Clearly, there are n intervals each of length 10 metres on both the sides of P. Now, suppose the man starts from A. He picks up the end stone on the left of mid-stone and goes to the mid-stone, drops it and goes to (n - 1)th stone on left, picks it up, goes to the mid-stone and drops it. This process is repeated till he collects all stones on the left of the mid-stone at the mid-stone. So, distance covered in collecting stones on the left of the mid-stones is
10 {tex} \times{/tex} n + 2 [10 {tex} \times{/tex} (n - 1) + 10  {tex} \times{/tex} (n - 2) + ... + 10 {tex} \times{/tex} 2 + 10 {tex} \times{/tex} 1].After collecting all stones on left of the mid-stone the man goes to the stone B on the right side of the mid-stone, picks it up, goes to the mid-stone and drops it. Then, he goes to (n - 1)th stone on the right and the process is repeated till he collects all stones at the mid-stone.So that distance covered in collecting the stones on the right side of the mid-stone is equal to 2 [10 {tex} \times{/tex} n + 10 {tex} \times{/tex} (n - 1) + 10 {tex} \times{/tex} (n - 2)+ ... +10 {tex} \times{/tex}  2 + 10 {tex} \times{/tex} 1].
Therefore,total distance covered
= 10 {tex} \times{/tex} n + 2 [10 {tex} \times{/tex} (n - 1) + 10 {tex} \times{/tex} (n - 2) + ... + 10 {tex} \times{/tex} 2 + 10 {tex} \times{/tex} 1]+ 2 [10 {tex} \times{/tex}  n + 10 {tex} \times{/tex}  (n - 1) + ... + 10 {tex} \times{/tex}  2 + 10 {tex} \times{/tex} 1]= 4 [10 {tex} \times{/tex} n + 10 {tex} \times{/tex} (n - 1) + ... +10 {tex} \times{/tex} 2 + 10 {tex} \times{/tex} 1] -10 {tex} \times{/tex} n
{tex} = 40 \{ 1 + 2 + 3 + \ldots + n \} - 10 n = 40 \left\{ \frac { n } { 2 } ( 1 + n ) \right\} - 10 n = 20 n ( n + 1 ) - 10 n = 20 n ^ { 2 } + 10 n{/tex}But, the total distance  that a man covered in collecting stones  is 3 km.i.e; 3000 m.
Therefore, 20 n2 + 10n = 3000 
{tex} \Rightarrow{/tex} 2n2 + n - 300 = 0.{tex}\implies{2n^2+25n+24n-300=0}{/tex}
{tex} \Rightarrow{/tex} (n - 12) (2n + 25) = 0 [Therefore, 2n + 25 {tex} \neq{/tex} 0]{tex}\implies {n-12=0}{/tex}
{tex} \Rightarrow{/tex} n = 12.Hence, the number of stones is equal to 12.Which is the required answer.

  • 1 answers

Nishant Sharma 7 years, 9 months ago

Smallest compsite no.-4. Smallest prme-2 hcf-2 lcm-4

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App