No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Tanisha Badlani 7 years, 9 months ago

Congurent by SSS criteria

Tanisha Sharma 7 years, 9 months ago

Yes this question answer u can find easily in NCERT book theorm 3
  • 5 answers

Aruhi Sharma 7 years, 9 months ago

Nice

Daljit Singh 7 years, 9 months ago

I am ready to give my 99.9 % in mathematics

Ayush Agrawal 7 years, 9 months ago

I

Jaskaran Singh 7 years, 9 months ago

95%

Aditya Makwana 7 years, 9 months ago

I
  • 1 answers

Vishnu Jha 7 years, 9 months ago

Tum class 9 phir se padho
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Then, in general the mth and nth terms can be written as 
Tm = a + (m - 1) d and Tn = a + (n - 1)d respectively.
According to the question,we are given that,

 (m.Tm) = (n.Tn)

{tex}\Rightarrow{/tex} m.{a + (m - 1)d} = n.{a + (n - 1)d}
{tex}\Rightarrow{/tex} a.(m - n) + {(m2 - n2) - (m - n)} . d = 0
{tex}\Rightarrow{/tex} (m - n).{a + (m + n - 1)}d.
{tex}\Rightarrow{/tex} (m - n).Tm+n = 0
{tex}\Rightarrow{/tex}Tm+n = 0 [{tex}\because{/tex} (m-n){tex}\neq{/tex}0].
Hence, the (m + n)th term is zero.

  • 3 answers

Tanisha Sharma 7 years, 9 months ago

Sme2 u oll

Tanu Priya 7 years, 9 months ago

Same to all

Arsh Sidhu 7 years, 9 months ago

Thanks
  • 7 answers

Aditya Makwana 7 years, 9 months ago

Ya it is difficult

Vishnu Jha 7 years, 9 months ago

Who said it is easy don't be so smart ok.

Daljit Singh 7 years, 9 months ago

It is Based on formula and understanding of the figure. If u know all the formula only then u will be able to do it.

Ayush Agrawal 7 years, 9 months ago

For me it's very easy. Main concept is to understand figure

Jaskaran Singh 7 years, 9 months ago

Easy

Tanu Priya 7 years, 9 months ago

Little bit difficult for me..

Prashant Singh 7 years, 9 months ago

For me it is difficult
  • 1 answers

Amanpreet Singh 7 years, 9 months ago

last exercises of some chapters are optional open ncert and see
  • 2 answers

Kamal Kumar 7 years, 9 months ago

Yes

Aditya Makwana 7 years, 9 months ago

No
  • 1 answers

Sia ? 6 years, 6 months ago

In the given figure we have {tex}P A \perp A C{/tex} and {tex}Q B \perp A C{/tex}.
     {tex}\Rightarrow Q B \| P A{/tex}
In  {tex}\triangle PAC{/tex} and {tex}\triangle Q B C{/tex}, we have

 {tex}\angle QCB= \angle PCA{/tex}      ( Common ) 

 {tex}\angle QBC= \angle PAC{/tex}           ( both are 90).
So by AA similarity rule , {tex}\triangle Q B C \sim \triangle P A C{/tex}.
      {tex}\therefore \frac { Q B } { P A } = \frac { B C } { A C }{/tex}
{tex}\Rightarrow \frac { z } { x } = \frac { b } { a + b }{/tex}. .....................................(i) [by the property of similar triangles]
In {tex}\triangle RAC{/tex}{tex}Q B \| R C{/tex}.
So, {tex}\triangle Q B A \sim \triangle R C A{/tex}.
{tex}\therefore \frac { Q B } { R C } = \frac { A B } { A C }{/tex}
{tex}\Rightarrow \frac { z } { y } = \frac { a } { a + b }{/tex}. .....................................(ii) [by the property of similar triangles]
Form (i) and (ii), we obtain
{tex}\frac { z } { x } + \frac { z } { y }{/tex}{tex}= \left( \frac { b } { a + b } + \frac { a } { a + b } \right) = 1{/tex}
{tex}\Rightarrow \quad \frac { z } { x } + \frac { z } { y } = 1{/tex}
{tex}\Rightarrow \frac { 1 } { x } + \frac { 1 } { y } = \frac { 1 } { z }{/tex}
or  {tex}\frac { 1 } { x } + \frac { 1 } { y } = \frac { 1 } { z }{/tex}.

Hence proved.

  • 2 answers

Keshav Bindal 7 years, 9 months ago

For ques. which has small digits eg. till 50, use direct......For big no. than 50 like till 100, use assumed mean method.......For very big no. like more than 100, use step deviation method.

Tanu Priya 7 years, 9 months ago

It is given in the question which methood will use..
  • 2 answers

Kamal Kumar 7 years, 9 months ago

72

Komal Khichar 7 years, 9 months ago

72 multiples of 4 lie b/w 10 and 250...
  • 1 answers

Komal Khichar 7 years, 9 months ago

Since the perimeter and the two sides are proportional # The third side is proportional to the corresponding third side. # The two triangles will be similar by SSS criterion.
  • 1 answers

Sia ? 6 years, 5 months ago

In a right triangle BAC,
BC2 = AB2 + AC2 …….. By Pythagoras theorem
= (14)2 + (14)2 = 2(14)2

{tex}\Rightarrow{/tex} BC = {tex}14\sqrt2{/tex} cm
{tex}\Rightarrow{/tex} Radius of the semicircle
=  {tex}\;\frac{14\sqrt2}2{/tex} cm = {tex}7\sqrt2{/tex} cm
Required area = Area BPCQB
= Area BCQB – Area BCPB
= Area BCQB – (Area BACPB - Area of {tex}\Rightarrow{/tex}BAC)
{tex}= \;\frac{180}{360}\mathrm\pi\left(7\sqrt2\right)^2\;-\left[\frac{90}{360}\mathrm\pi(14)^2\;-\frac{14\times\;14}2\right]{/tex}
{tex}\;\frac12\times\frac{22}7\times98\;-\left[\frac14\times\frac{22}7\times196\;-98\right]{/tex}
= 154 – (154 – 98) = 98 cm2

  • 2 answers

Komal Khichar 7 years, 9 months ago

1768 is the no. And we can obtain this no. By the following rule: Dividend = Divisor × Quotient + Remainder

Himanshu Tyagi 7 years, 9 months ago

1768 is the required no.
  • 2 answers

Komal Khichar 7 years, 9 months ago

2/7 is the probability of required situation

Harry Sood 7 years, 9 months ago

This question is not of our sllybas Bert class 10
  • 6 answers

Shikhar Yadav 5 years, 8 months ago

You can't do it that doesn't mean that no one can't , so shut up

Aruhi Sharma 5 years, 8 months ago

I have not understand ??

Aurthur Strange 5 years, 8 months ago

????

Aruhi Sharma 5 years, 8 months ago

Me

Shikhar Yadav 5 years, 8 months ago

I have a chance if internal marks is given

Vaibhav Sukhwal 5 years, 8 months ago

You will not able to do this so dont try at home
  • 1 answers

Aurthur Strange 7 years, 9 months ago

Plz koi to ans kar
  • 0 answers
  • 3 answers

Komal Khichar 7 years, 9 months ago

Whole No. H

Shikhar Yadav 7 years, 9 months ago

Rational number

Aurthur Strange 7 years, 9 months ago

I guess it is whole number
  • 0 answers
  • 2 answers

Komal Khichar 7 years, 9 months ago

2secA

Himanshu Tyagi 7 years, 9 months ago

2secA
  • 1 answers

Tarun Saini 7 years, 9 months ago

67

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App