No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
9
  • 0 answers
  • 1 answers

Megha A 7 years, 9 months ago

Look ncert dere r 2 theorems.
  • 0 answers
  • 4 answers

Anshika Ragu 7 years, 9 months ago

1

Abhinav Jha 7 years, 9 months ago

1

Sanjana Yadav 7 years, 9 months ago

1

Ananya Chaturvedi 7 years, 9 months ago

Ans-1
  • 1 answers

Sia ? 6 years, 5 months ago

According to question we are given that, a = 4, l = 49 and Sn = 265.we know that S​​​​​​n ​​​​= {tex}\frac n2{/tex}(a+l)
{tex}\therefore{/tex} 265 = {tex}\frac{n}{2}{/tex}(4 + 49) {tex}\Rightarrow{/tex} 530 = 53n {tex}\Rightarrow{/tex} n = 10
{tex}\therefore l{/tex} = a10 = a + 9d
{tex}\Rightarrow{/tex} 49 = 4 + 9d {tex}\Rightarrow{/tex} 9d = 45 {tex}\Rightarrow{/tex} d = 5
{tex}\therefore{/tex} Common difference of = 5.

  • 1 answers

Megha A 7 years, 9 months ago

LHS: (1/sinA-sinA) (1/cosA-cosA) (1-sin sq A/sinA)(1-cos sq A/cosA) ( cos sq A/sinA)( sin sq A/cosA) = cosAsinA RHS: 1/sinA/cosA+cosA/sinA Sin sq A + cos sq A/sinAcosA 1/1/sinAcosA = sinAcosA LHS =RHS HENCE PROVED
  • 1 answers

Sia ? 6 years, 6 months ago

Given: {tex}\frac { x } { a } \cos \theta + \frac { y } { b } \sin \theta = 1 \text { and } \frac { x } { a } \sin \theta - \frac { y } { b } \cos \theta = 1 , {/tex}
To prove:  {tex}\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 2{/tex}
Now, {tex}{\left( {\frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta } \right)^2} + {\left( {\frac{x}{a}\sin \theta - \frac{y}{b}\cos \theta } \right)^2} = {(1)^2} + {(1)^2}{/tex}
{tex} = \frac{{{x^2}}}{{{a^2}}}{\cos ^2}\theta + \frac{{{y^2}}}{{{b^2}}}{\sin ^2}\theta + 2\frac{x}{a}\cos \theta \frac{y}{b}\sin \theta + \frac{{{x^2}}}{{{a^2}}}{\sin ^2}\theta + \frac{{{y^2}}}{{{b^2}}}{\cos ^2}\theta - 2\frac{x}{a}\sin \theta \frac{y}{b}\cos \theta = 1 + 1{/tex}
{tex} = \frac{{{x^2}}}{{{a^2}}}{\cos ^2}\theta + \frac{{{x^2}}}{{{a^2}}}{\sin ^2}\theta + \frac{{{y^2}}}{{{b^2}}}{\sin ^2}\theta + \frac{{{y^2}}}{{{b^2}}}{\cos ^2}\theta = 2{/tex}
{tex} = \frac{{{x^2}}}{{{a^2}}}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) + \frac{{{y^2}}}{{{b^2}}}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 2{/tex}
{tex} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 2{/tex} {tex}\left[ {\because {{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right]{/tex}
Hence proved.

  • 5 answers

Keerthana Devaraj 7 years, 9 months ago

108

Rahu L 7 years, 9 months ago

108?

Anupama Chandran 7 years, 9 months ago

Is it 108?

Vineet Chaturvedi 7 years, 9 months ago

3+6+9+12+15+18+21+24=108

Rahu L 7 years, 9 months ago

48 ..?
  • 1 answers

Anmol Yadav 7 years, 9 months ago

What
  • 4 answers

Anshika Ragu 7 years, 9 months ago

a=9,d=-2,a10=-9

Abhinav Jha 7 years, 9 months ago

-9

Rahu L 7 years, 9 months ago

0...?

Rahu L 7 years, 9 months ago

0
  • 1 answers

Ayushi Shrivastava 7 years, 9 months ago

Formula for finding quadratic polynomial is= x2 - (sum of zeroes)x + (product of zeroes) Polynomial= x2 - 1/4x + (-1) =x2 - 1/4x - 1
  • 1 answers

Payal Goyal 7 years, 9 months ago

Same to u
  • 1 answers

Aisha Massey 7 years, 9 months ago

It is used when In question a line is divide into any ratio for ex-4:5 so here 4 is m and 5 is n
  • 2 answers

Ayush Star 7 years, 9 months ago

K = 1/2 By putting value of s in eq

Ayush Star 7 years, 9 months ago

3×3-2×k×3-6 =0 9-6-6k =0 3-6k =0 K= 1/2
  • 2 answers

Bulldog Soup 7 years, 9 months ago

a²+2ab+b²

Retika Malhotra 7 years, 9 months ago

A square +_2ab +b square
  • 4 answers

Tanisha Badlani 7 years, 9 months ago

D

Samaira Sen 7 years, 9 months ago

As ur wish.....

Ayush Star 7 years, 9 months ago

Section D

Priyanka Nanda 7 years, 9 months ago

Start with those section which you know ?
  • 0 answers
  • 1 answers

Shivansh Srivastav 7 years, 9 months ago

Unit Title Weightage 1 Number System 06 2 Algebra 20 3 Co-ordinate Geometry 06 4 Geometry 15 5 Trigonometry 12 6 Mensuration 10 7 Statistics And Probability 11 Total Marks 80 Marks No. of Questions 1 Mark 6 2 Marks 6 3 Marks 10 4 Marks 8 Total 30
  • 2 answers

Samaira Sen 7 years, 9 months ago

Hence proved

Ritwik Anand 7 years, 9 months ago

What
  • 2 answers

Anuj Bansal 7 years, 9 months ago

No

Md Adnan Qasim 7 years, 9 months ago

If u want u can
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Then,
S= sum of first m terms of the given AP;
S= sum of first n terms of the given AP.
{tex}\frac { S _ { m } } { S _ { n } } = \frac { m ^ { 2 } } { n ^ { 2 } } \Rightarrow \frac { \frac { m } { 2 } [ 2 a + ( m - 1 ) d ] } { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } = \frac { m ^ { 2 } } { n ^ { 2 } }{/tex}
{tex} \Rightarrow \frac { 2 a + ( m - 1 ) d } { 2 a + ( n - 1 ) d } = \frac { m } { n }{/tex}
{tex}\Rightarrow{/tex} 2an+mnd-nd= 2am+mnd-md
{tex}\Rightarrow{/tex} 2an-2am=nd-md
{tex}\Rightarrow{/tex} 2a(n - m) = d(n - m) {tex}\Rightarrow{/tex}2a=d...(i)
{tex}\therefore \quad \frac { T _ { m } } { T _ { n } } = \frac { a + ( m - 1 ) d } { a + ( n - 1 ) d } = \frac { a + ( m - 1 ) \cdot 2 a } { a + ( n - 1 ) \cdot 2 a }{/tex} [from (i)]
{tex}= \frac { a + 2 a m - 2 a } { a + 2 a n - 2 a } = \frac { 2 a m - a } { 2 a n - a } = \frac { a ( 2 m - 1 ) } { a ( 2 n - 1 ) } = \frac { 2 m - 1 } { 2 n - 1 }{/tex}.

  • 3 answers

Anupama Chandran 7 years, 9 months ago

Really??????? Then it's ok???

A B 7 years, 9 months ago

Confirm (with same values from ncert).

Shashi Sharma 7 years, 9 months ago

Of 65to 72 marks
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App