No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Degree of remainder is always less than the degree of divisor.
So, Degree of remainder will be less than 2{{tex}\because{/tex} degree of divisor is 2}
Hence, degree of remainder is 1 or 0.

  • 1 answers

Kanish Kumar 7 years, 8 months ago

Linear
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Every even integer greater than 2 can be expressed as the sum of two primes.

  • 1 answers

Shreyas Pandey 7 years, 8 months ago

Hlo muskan
  • 1 answers

Deepanshi D. P 7 years, 8 months ago

Help book of maths dear
  • 1 answers

Jayesh Patel 7 years, 8 months ago

4
  • 0 answers
  • 1 answers

Karan Gandhi 7 years, 8 months ago

Smallest composite number =4 smallest prime number =2 hcf of 2and 4=2 ans =2*
  • 1 answers

Manjari S 7 years, 8 months ago

138
  • 2 answers

Lipsa Rani 7 years, 8 months ago

(-10-9Y )÷2

Faisal Khan 7 years, 8 months ago

Y=10/9
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}2x + y = 2{/tex} ...(i)
{tex}2y - x = 4{/tex} ...(ii)
from (i), {tex}2x + y = 2 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
1 0 2
0 2 -2

from (ii), {tex}2y - x = 4 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
0 -4 2
2 0 3


Area {tex}\triangle{/tex} = {tex}\frac{1}{2}{/tex}AB {tex}\times{/tex} CO
={tex}\frac{1}{2}{/tex} {tex}\times{/tex}{tex}\times{/tex} 2
=5 square units.

  • 1 answers

Sia ? 6 years, 6 months ago

We have to find the value of  k for which x4 + 10x3 + 25x2 + 15x + k is exactly divisible by x + 7.

If x + 7 is a factor then (-7) is a root.
So f(-7) = (-7)4 + 10 (-7)3 + 25(-7)2 + 15(-7) + k = 0
2401 - 3430 + 1225 -105 + k = 0
or, 3626 - 3535 + k = 0
or, 91 + k = 0
{tex}\therefore{/tex}k = -91

  • 1 answers

Sia ? 6 years, 6 months ago

Suppose the first and second number be x and y respectively.
According to the question,
{tex}2x + 3y = 92{/tex} .......(i)
{tex}4x - 7y = 2{/tex} .......(ii)
Multiplying equation (i) by 7 and (ii) by 3, 
{tex}\Rightarrow 14x + 21y = 644{/tex} .......(iii)
{tex}12x - 21y = 6{/tex} .........(iv)
Adding equations (iii) and (iv), 
{tex}\Rightarrow 26x = 650{/tex}
{tex}\Rightarrow x = \frac { 650 } { 26 } = 25{/tex}
Putting {tex}x = 25{/tex} in equation (i), 
{tex}\Rightarrow 2 \times 25 + 3 y = 92{/tex}
{tex}\Rightarrow50 + 3y = 92{/tex}
{tex}\Rightarrow 3 y = 92 - 50{/tex}
{tex}y = \frac { 42 } { 3 } = 14{/tex}
y = 14
{tex}\therefore{/tex} the first number is 25 and second is 14

  • 1 answers

Rashi Ulman 7 years, 8 months ago

The consistent line has a unique solution whereas inconsistent line has no solution
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

We have to find the zeroes of the quadratic polynomial  4y2 – 15 and verify the relationship between the zeroes and coefficient of polynomial.

Let {tex}f(y)\;=\;4y^2\;–\;15{/tex}
Compare it with the quadratic {tex}ay^2\;+\;by\;+\;c{/tex}.
Here, coefficient of{tex}\;y^2\;=\;4{/tex}, coefficient of y = 0 and constant term = - 15.
Now {tex}4y^2\;–\;15\;=\;(2y)^2\;–\;(\;\sqrt{15})^2{/tex}
= {tex}(2y\;+\;\;\sqrt{15})(2y\;-\;\sqrt{15}){/tex}
The zeroes of f(y) are given by {tex}f(y) = 0{/tex}
{tex}(2y)\;+\;\;\sqrt{15})(2y\;-\;\sqrt{15}){/tex} = 0
⇒  {tex}(2y)\;+\;\;\sqrt{15}){/tex} = 0 or {tex}(2y\;-\;\;\sqrt{15}){/tex} = 0
{tex}2y\;=\;-\;\;\sqrt{15}{/tex} or {tex}2y\;=\; \;\;\sqrt{15}{/tex}
⇒  {tex}\;y\;=\;-\frac{\;\;\sqrt{15}}2{/tex} or {tex}\;y\;=\;\frac{\;\;\sqrt{15}}2{/tex}
Hence, the zeroes of the given quadratic polynomial are {tex}-\frac{\;\;\sqrt{15}}2{/tex}, {tex} \frac{\;\;\sqrt{15}}2{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App