No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}{\frac{1}{{2x}} + \frac{1}{{3y}} = 2}{/tex} ... (1)
{tex}\frac{1}{{3x}} + \frac{1}{{2y}} = \frac{{13}}{6}{/tex} ...(2)
Let {tex}\frac{1}{x}{/tex}= p and {tex}\frac{1}{y}{/tex}= q
Putting this in equation (1) and (2), we get
{tex}\frac{p}{2} + \frac{q}{3} = 2{/tex} and {tex}\;\frac{p}{3} + \frac{q}{2} = \frac{{13}}{6}{/tex}
{tex}\Rightarrow{/tex} 3p + 2q = 12 and 6(2p +3q) = 13 (6)
{tex}\Rightarrow{/tex} 3p + 2q = 12 and 2p + 3q = 13
{tex}\Rightarrow{/tex} 3p + 2q - 12 = 0 .................. (3) and
2p + 3q - 13 = 0 ................. (4)

{tex}\frac{p}{{2( - 13) - 3( - 12)}} = \frac{q}{{( - 12)2 - ( - 13)3}}{/tex}{tex} = \frac{1}{{3 \times 3 - 2 \times 2}}{/tex}
{tex}\Rightarrow \frac{p}{{ - 26 + 36}} = \frac{q}{{ - 24 + 39}} = \frac{1}{{9 - 4}}{/tex}
{tex} \Rightarrow \frac{p}{{10}} = \frac{q}{{15}} = \frac{1}{5} \Rightarrow \frac{p}{{10}} = \frac{1}{5}\,{\text{and}}\,\frac{q}{{15}} = \frac{1}{5}{/tex}
{tex}\Rightarrow{/tex} p = 2 and q = 3
But {tex}\frac{1}{x}{/tex} = p and {tex}\frac{1}{y}{/tex} = q
Putting value of p and q in this we get,
x = {tex}\frac{1}{2}{/tex}and y = {tex}\frac{1}{2}{/tex}

  • 4 answers

V Sridhar 7 years, 7 months ago

The quadratic equation f (x) = x*x -2kx+6=0

if one of the root is 3 then , f(3) = 3*3 - 2k*3+6 =0 (replacing x by 3 in the equation

i.e., k = 15/6

Tanya Taylor 7 years, 7 months ago

Ans is . 9

Vaishali Pundir 7 years, 7 months ago

How

Sunny Boss 7 years, 7 months ago

Answer is 9
  • 1 answers

Manu Prajapati 7 years, 7 months ago

1.414
  • 1 answers

Vaishali Pundir 7 years, 7 months ago

In this first find alpha +beta by given quadratic equation means 5 /2 and then add 2alpha +2 beta +3 alpha +3 beta =. 5 alpha +5 beta now. Take 5 as common so (alpha +beta )5 put the value of alpha + beta=5/2 ×5 =25/2 and simlary find product of alpha beta from given quadratic equation =7/2 and then multiply (2 alpha +3 beta) (3alpha +2 beta) =6 alpha square +6 beta square appply identity (alpha +beta ) sqaure +2ab then product come And put in this equation x square -(alpha + beta)x +alpha × beta Put the the of product and sum that we gain
  • 1 answers

Sia ? 6 years, 4 months ago

Given: Let, ABCD is a rhombus and since diagonals of a rhombus bisect each other at {tex} 90 ^ { \circ }{/tex}

To Prove: {tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex}
Proof : 
{tex}\therefore {/tex}{tex}A O = O C {/tex} 
{tex}\Rightarrow A O ^ { 2 } = O C ^ { 2 }{/tex}
{tex}B O = O D {/tex} 
{tex}\Rightarrow B O ^ { 2 } = O D ^ { 2 }{/tex}
and {tex}\angle A O B = 90 ^ { \circ }{/tex} 
{tex}\therefore {/tex} {tex} A B ^ { 2 } = O A ^ { 2 } + B O ^ { 2 }{/tex}
Similarly, {tex} A D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}
{tex}BC ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}
{tex}C D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}  
{tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + D A ^ { 2 } = 4 A O ^ { 2 } + 4 D O ^ { 2 }{/tex} 
{tex} = ( 2 A O ) ^ { 2 } + ( 2 D O ) ^ { 2 }{/tex} 
{tex} = ( 2 x ) ^ { 2 } + ( 2 y ) ^ { 2 }{/tex} 
{tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex} 
Hence proved.

  • 1 answers

Sia ? 6 years, 4 months ago

Let a = bq + r : b = 2
0 {tex} \leqslant {/tex} r < 2 i.e., r = 0, 1
a = 2q + 0, 2q + 1,
If a = 2q (which is even)
If a = 2q + 1 (which is odd)
So, every positive even integer is of the form 2q and odd integer is of the form 2q + 1.

  • 1 answers

Kannu Kranti Yadav 7 years, 7 months ago

x+y=5,2x-3y=4from1 x=5-y putting value of x in 2. 2(5-y)-3y=4. 10-2y-3y=4. 10-5y=4. Y=6/5.putting value of y in2. x+6/5=5. x=25-6/5. X =19/5
  • 3 answers

Srushti Kunkolienkar 7 years, 7 months ago

But how to solve in quadratic equation ?

Kannu Kranti Yadav 7 years, 7 months ago

Age of father=42years and age of son =10years

Soni Kumari 7 years, 7 months ago

7786
  • 1 answers

Sia ? 6 years, 4 months ago

Given integers are 408 and 1032 where 408 < 1032
By applying Euclid’s division lemma, we get 1032 = 408 {tex}\times{/tex} 2 + 216.
Since the remainder ≠ 0, so apply division lemma again on divisor 408 and remainder 216, we get the relation as
408 = 216 {tex}\times{/tex} 1 + 192.
Since the remainder ≠ 0, so apply division lemma again on divisor 216 and remainder 192
216 = 192 {tex}\times{/tex} 1 + 24.
Since the remainder ≠ 0, so apply division lemma again on divisor 192 and remainder 24 
192 = 24 × 8 + 0.
Now the  remainder has become 0. Therefore, the H.C.F of 408 and 1032 = 24.
Therefore,
24 = 1032m - 408 {tex}\times{/tex} 5
1032m = 24 + 408 {tex}\times{/tex} 5
1032m = 24 + 2040
1032m = 2064  
{tex}m = \frac{{2064}}{{1032}}{/tex}
Therefore, m = 2.

  • 1 answers

Sia ? 6 years, 4 months ago

HCF of 56 and 72

{tex}\begin{array}{l}56=8\times7=2^3\times7\\72=8\times9=2^3\times3^2\\So\;HCF(56,72)=2^3=8\end{array}{/tex}

d = 56x + 72y

⇒ 8 = 56x + 72y

Dividing by 8 both sides

1= 7x + 9y

Put x = 4 and y = –3

1 = 7 × 4 + 9(–3)

= 28 – 27

1 = 1

L.H.S = R.H.S.

Put x = –5 and y = 4

1 = 7(–5) + 9 {tex} \times {/tex} 4

= –35 + 36

1 = 1

L.H.S = R.H.S.

x = 4, and y = –3
x = –5 and y = 4
Satisfy the equations
 ∴  x and y are not unique.

  • 1 answers

Sia ? 6 years, 4 months ago

If a and b are odd numbers then it should be in 2q+1 or 2q+3 form where q is a positive integer.

Let a = 2q + 3 , b = 2q + 1  and a > b
Now, {tex}\frac{a + b } {2} = \frac{ 2q + 3 + 2q + 1}{2}{/tex}
{tex}= \frac { 4 q + 4 } { 2 }{/tex}
= 2q + 2
{tex}\frac{a+b}{2}{/tex}=2(q+1) = an even number..........(1)
Now

 {tex}\frac { a - b } { 2 } = \frac { ( 2 q + 3 ) - ( 2 q + 1 ) } { 2 }{/tex}
{tex}= \frac { 2 q + 3 - 2 q - 1 } { 2 }{/tex}
{tex}\frac{a-b}{2}= \frac { 2 } { 2 }{/tex} = 1 = an odd number..........(2)
Hence From (1) and (2) {tex}\frac{a+b}{2}{/tex}   and {tex}\frac{a-b}{2}{/tex}   are even and odd numbers respectively

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago


x = a + b
{tex}\therefore{/tex} (a - b)(a + b) + (a + b)y = a2 - b2 - 2ab
a2 - b2 + (a + b)y = a2 - b2 - 2ab
{tex}y = \frac{{ - 2ab}}{{a + b}}{/tex}

  • 1 answers

Kannu Kranti Yadav 7 years, 7 months ago

According to the right hand thumb rule when we take a conductor in our hand and wrap it with our fingers then the wrapped fingers show the direction of magnetic field lines and thumb show the direction of current
  • 1 answers

V Sridhar 7 years, 7 months ago

Let 1/x = a and 1/y = b

eqn 1/2x-1/y=-1 is now a/2 - b = -1 or a - 2b = -2 ----------(1)
eqn 1/x+1/2y=8 is now a + b/2 = 8 or 2a + b = 16 ---------(2)

solving (1) and (2) we get , a= 6. but a = 1/x . Therefore x= 1/6
similarly b = 4 . But b = 1/y. Therefore y = 1/4
  • 1 answers

Utkarsh Patel 7 years, 7 months ago

In ex.6.2, ques.3,4,5,6,10 In ex.6.3, ques.2,3,4,7,9,10,11,15,16 These ques.are important and come inboard exam
  • 2 answers

Varun Punia 7 years, 7 months ago

It is based on substitution only which question do you want to ask

Harry Potter 7 years, 7 months ago

easy it is
  • 0 answers
  • 1 answers

Varun Punia 7 years, 7 months ago

If you will not learn maths then you willnot be able to answer simple addition or subtraction. It is used in our daily life
  • 1 answers

Manu Prajapati 7 years, 7 months ago

What do you want ask in which
  • 1 answers

Kannu Kranti Yadav 7 years, 7 months ago

Distance=(x2-x1)+(y2-y1). (-2)²+(1)². 4+1=5so distance ² =5 ,distance is root 5
  • 6 answers

Charu Sharma 7 years, 7 months ago

RD Sharma is the best....... not sure ........but it all types of questions......so it is the best according to me

Unnati Pragya 7 years, 7 months ago

All books are good but RD Sharma is one of the best book according to me

Jitesh Kamboj 7 years, 7 months ago

Rd sharma

Priyanshu Kumar 7 years, 7 months ago

All the books are best

Priyanka Chaurasiya 7 years, 7 months ago

Ncert and ncert exampler

Mohit Godara 7 years, 7 months ago

All in one
  • 1 answers

Sia ? 6 years, 4 months ago

The given quadratic polynomial is:
f(x) = x3 + 3px2 + 3qx + r
we have to show that the zeroes of given polynomial are in the form of AP.
Let, a - d, a, a + d be the zeroes of the polynomial, then
The sum of zeroes = {tex}\frac{{ - b}}{a}{/tex}
a + a - d + a + d = -3p
3a = - 3p
a = - p
Since, a is the zero of the polynomial f(x),
Therefore, f(a) = 0
f(a) = a3 + 3pa2 + 3qa + r = 0
{tex}\Rightarrow{/tex} a3 + 3pa2 + 3qa + r = 0
{tex}\Rightarrow{/tex} (-p)3 + 3p(-p)2 + 3q(-p) + r = 0
{tex}\Rightarrow{/tex} -p3 + 3p3 - 3pq + r = 0
{tex}\Rightarrow{/tex}  2p3 - 3pq + r = 0
Which is the required condition.

  • 1 answers

Kannu Kranti Yadav 7 years, 7 months ago

The equation having unique or infinite solutions are consistent solutions.the equation which does not have any solution is inconsistent.
  • 1 answers

Tanya Sharmaa 7 years, 7 months ago

X2 - 4x + 1 = 0 A= 1 B = -4 c = 1 D = b2 - 4ac D = (-4)2 - 4 × 1 × 1 D = 16 - 4 D = 12

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App