No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Ayush Gupta Ayush Gupta 7 years, 6 months ago

Etdsg
  • 0 answers
  • 4 answers

Shreya Sharma 7 years, 6 months ago

Thanks

Kannu Kranti Yadav 7 years, 6 months ago

In graph for unique solution,the lines will intersect each other. In graph for no solution, the lines will be parallel. In graph for many solution, the lines will be coincidence

Ankita ?? Arpita☺️ 7 years, 6 months ago

Hi

D S 7 years, 6 months ago

Hi
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}2 \mathrm { x } ^ { 3 } + \mathrm { x } ^ { 2 } - 5 \mathrm { x } + 2 ; \frac { 1 } { 2 } , 1 , - 2{/tex}
Comparing the given polynomial with 
{tex}a x ^ { 3 } + b x ^ { 2 } + c x + d{/tex}, we get
a = 2, b = 1, c = 5, d = 2
Let {tex}p ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
Then,
{tex}P \left( \frac { 1 } { 2 } \right) = 2 \left( \frac { 1 } { 2 } \right) ^ { 3 } + \left( \frac { 1 } { 2 } \right) ^ { 2 } - 5 \left( \frac { 1 } { 2 } \right) + 2{/tex}
{tex}= \frac { 1 } { 4 } + \frac { 1 } { 4 } - \frac { 5 } { 2 } + 2 = 0{/tex}
{tex}p ( 1 ) = 2 ( 1 ) ^ { 3 } + ( 1 ) ^ { 2 } - 5 ( 1 ) + 2{/tex}
= 2 + 1 - 5 + 2 = 0
{tex}p ( - 2 ) = 2 ( - 2 ) ^ { 3 } + ( - 2 ) ^ { 2 } - 5 ( - 2 ) + 2{/tex}
= -16 + 4 + 10 + 2 = 0
Therefore, {tex}\frac{1}{2}{/tex}, 1 and -2 are the zeroes of
{tex}2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
So, {tex}\alpha = \frac { 1 } { 2 } , \beta = 1 \text { and } \gamma = - 2{/tex}
Therefore,
{tex}\alpha + \beta + \gamma = \frac { 1 } { 2 } + 1 + ( - 2 ) = - \frac { 1 } { 2 } = - \frac { b } { a }{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = \left( \frac { 1 } { 2 } \right) \times ( 1 ) + ( 1 ) \times ( - 2 ) + ( - 2 ) \times \left( \frac { 1 } { 2 } \right){/tex}
{tex}= \frac { 1 } { 2 } - 2 - 1 = - \frac { 5 } { 2 } = \frac { c } { a }{/tex}
{tex}\alpha \beta \gamma = \left( \frac { 1 } { 2 } \right) \times ( 1 ) \times ( - 2 ) = - 1 = \frac { - 2 } { 2 } = \frac { - d } { a }{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

All multiples of 7 lying between 500 and 900 are
504,511,518,...,896
This is an AP in which a = 504, d=7 and l = 896.
Let the given AP contain n terms. Then,
Tn = 896 {tex}\Rightarrow{/tex} a + (n - 1)d = 896 {tex}\Rightarrow{/tex}504 + (n -1) {tex}\times{/tex} 7 = 896 {tex}\Rightarrow{/tex}497 + 7n = 896
{tex}\Rightarrow{/tex}7n = 399 {tex}\Rightarrow{/tex}n = 57.
{tex}\therefore{/tex}required sum = {tex}\frac{n}{2}{/tex}(a + l)
={tex}\frac{{57}}{2}{/tex}{tex}\cdot{/tex}(504 + 896) = ({tex}\frac{{57}}{2}{/tex}{tex}\times{/tex}1400) = 39900.
Hence, the required sum is 39900.

  • 1 answers

Sia ? 6 years, 4 months ago

Given that the pth, qth and rth terms of an AP be a, b, c respectively.
Suppose, x be the first term and d be the common difference of the given arithmetic progression. Therefore,
Tp =  x+(p-1)d, Tq =x+(q-1)d and Tr =x+(r-1)d

Now, T= a {tex}\Rightarrow{/tex} x+(p-1)d = a ....(i)
T= b {tex}\Rightarrow{/tex} x+(q-1)d = b....(ii)
T= c {tex}\Rightarrow{/tex} x+(r-1)d = c....(iii)
On multiplying (i) by (q-r), (ii) by (r-p) and (iii) by (p-q), we get,
(q-r)[x+(p-1)d]=a(q-r)....(iv)
(r-p)[x+(q-1)d]=b(r-p)....(v)
(p-q)[x+(r-1)d]=c(p-q)....(vi)
Now adding we get,
a(q - r) + b(r - p) + c(p - q) = x{(q - r) + (r - p) + (p - q)} + d{(p - 1)(q - r)+ (q - 1)(r - p)+ (r - 1)(p - q)}
= (x {tex}\times{/tex} 0) + (d {tex}\times{/tex} 0) = 0
Therefore, a(q - r) + b(r - p) + c(p - q) = 0.
Hence proved.

  • 1 answers

Srushti Kunkolienkar 7 years, 6 months ago

an=6n+2 a1=6(1)+2 a1=8 a2=6(2)+2 a2=14 d=a2-a1 =14-8 =6
  • 3 answers

Amit Kumar 7 years, 6 months ago

2x - 45 =y and 2y - 21 = x . Solve it by substitution method by putting the value of x .

Amit Kumar 7 years, 6 months ago

Please solve it completely

Aditya Singh 7 years, 6 months ago

Let the greater no be x and smaller no be y Acc.2 que. X square -45=y Y square-21=x Solve this equation by elimination method
  • 2 answers

Amit Kumar 7 years, 6 months ago

View full question

Anushka Garg 7 years, 6 months ago

PtA nahi
  • 4 answers

Sanjay Kumar 7 years, 6 months ago

2/7 is right answer ,

Manu Prajapati 7 years, 7 months ago

53/1465

Kunal Rajour 7 years, 7 months ago

53/366

Gaurav Naagar 7 years, 7 months ago

2/7
  • 2 answers

Priyanshu Kumar 7 years, 6 months ago

Ya

Rashim Maan 5 years, 8 months ago

Hlo is anyone online? ??
  • 2 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

5 number ki (iv) galat hai

Ankita ?? Arpita☺️ 7 years, 6 months ago

5 number ki kon si bit
  • 2 answers

Raunak Kumar 7 years, 7 months ago

1

Raunak Kumar 7 years, 7 months ago

=abc prove that
  • 0 answers
  • 0 answers
  • 2 answers

Preet Singh 7 years, 7 months ago

-4(-1452)=+5808

Ujjwal Sharma 7 years, 7 months ago

5929
  • 3 answers

The Devil Prince 7 years, 7 months ago

In programming, a constant is a value that never changes. The other type of values that programs use is variables, symbols that can represent different values throughout the course of a program. A constant can be. a number, like 25 or 3.6. a character, like a or $. ????

Priyanshu Kumar 7 years, 7 months ago

The numerical value which does mot change.it doesnt contain any variable

Ujjwal Sharma 7 years, 7 months ago

Constant is a number that is fixed that can't be change
  • 4 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

Sum of all sides

Priyanshu Kumar 7 years, 7 months ago

Sum of all sides of triangle

Priyanka Chaurasiya 7 years, 7 months ago

Adding all sides.

Gunish Singla 7 years, 7 months ago

all sides are add
  • 3 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

13 and 39

Kunal Rajour 7 years, 7 months ago

The no.s are 13 and 39

Pratyush Ranjan Mohapatra 7 years, 7 months ago

Let the numbers be x and 3x Differences between the two numbers is 26 So, 3x-x =26 =2x=26 =x=13 other number is 39 Hence, the numbers are 13 and 39
  • 1 answers

Sia ? 6 years, 4 months ago

Let, the two zeroes of the polynomial f(x) = 4x2 - 8kx - 9 be α and -α.
Comparing f(x) = 4x2 - 8kx - 9  with ax2+bx+c we get
a = 4; b = -8k and c = -9.
Sum of the zeroes =  α + (-α) ={tex}-\frac ba=\;-\frac{-8k}4 {/tex}
0 = 2k
k = 0

  • 0 answers
  • 1 answers

..... ...... 7 years, 7 months ago

Y= 4 and X = 4 . Solve it by eliminating 2x?
  • 1 answers

..... ...... 7 years, 7 months ago

HCF= 768÷96=8
  • 1 answers

Sia ? 6 years, 4 months ago

We have,
LHS = (tanA + cosec B)2 - (cotB - sec A)2
{tex}\Rightarrow{/tex} LHS = (tan2A + cosec2B + 2tanA cosecB ) - (cot2B + sec2A - 2cotB secA)
{tex}\Rightarrow{/tex} LHS = (tan2A - sec2A)+(cosec2B - cot2B)+2tanA cosecB +2cotB secA
But,  Sec2A - tan2A =1 & cosec2A - cot2 A = 1
{tex}\therefore{/tex} LHS = -1 + 1 + 2 tanA cosecB + 2cotB secA
{tex}\Rightarrow{/tex} LHS = 2 (tanA cosecB + cotB secA)
{tex}\Rightarrow{/tex} LHS = 2 tanA cotB{tex}\left( \frac { cosec\: B } { \cot B } + \frac { \sec A } { \tan A } \right){/tex} [Dividing and multiplying by tanA cotB]
{tex}\Rightarrow{/tex} LHS = 2tan A cotB{tex}\left\{ \frac { \frac { 1 } { \sin B } } { \frac { \cos B } { \sin B } } + \frac { \frac { 1 } { \cos A } } { \frac { \sin A } { \cos A } } \right\}{/tex} [Since, CosecA.SinA =1 , SecA.cosA =1, (sinA/cosA)= tanA & (cosA/SinA) =cotA ]
{tex}\Rightarrow{/tex} LHS = 2 tanA cotB{tex}\left( \frac { 1 } { \cos B } + \frac { 1 } { \sin A } \right){/tex} = 2tanA cotB ( secB + cosecA ) = RHS.  Hence, proved.

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App