No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Kartik Tiwari 7 years, 6 months ago

Not 45 it is actually (3+3)*5

Ammu Ammu 7 years, 6 months ago

45

Agnibha Karmakar 7 years, 6 months ago

45
  • 1 answers

Priyanshu Kumar 7 years, 6 months ago

Arithmetic progressions
  • 1 answers

Ammu Ammu 7 years, 6 months ago

Let the speed of car A = x km/h Let the speed of car :-) :-) :-) :-) :-) :-) :-) In the same direction ..... Speed = (x-y) km/h (condition given in book) In opposite direction ........ Speed= (x+y) km/h (............) Speed=d/t According to 1condition... x-y=70/7 So, x-y=10 ........eq(1) According to 2 condition... x+y=70.........eq(2) By elimination x-y=10 x+y=70 ----------- 2x=80 x=40km/h So y=30km/h. Hope you understand :-) :-) :-) :-)
  • 4 answers

Aman Lohiya 7 years, 6 months ago

Many equation to solve this equation

Atharva Patel 7 years, 6 months ago

16x+12y=16

Vasudev Rathore 7 years, 6 months ago

12x+9y=12

Anish Bemalked 7 years, 6 months ago

8x+6y=8
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given 2x + 3y = 7 and  2ax + {tex}( \alpha + \beta ){/tex}y = 28.
We know that the condition for a pair of linear equations to be consistent and having infinite number of solutions is

{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}

{tex}\frac { 2 } { 2 a } = \frac { 3 } { a + \beta } = \frac { 7 } { 28 }{/tex}

{tex}\frac { 2 } { 2 \alpha } = \frac { 7 } { 28 }{/tex}

{tex}= 2 \alpha \times 7 = 28 \times 2{/tex}

{tex}\alpha = 4{/tex}

{tex}\frac { 3 } { \alpha + \beta } = \frac { 7 } { 28 }{/tex}

{tex}= 7 ( \alpha + \beta ) = 28 \times 3{/tex}

or, {tex}a + \beta = 12{/tex}

or, {tex}\beta = 12 - \alpha{/tex}

or, {tex}\beta = 12 - 4{/tex}

or, {tex}\beta = 8{/tex}

  • 1 answers

Ansh Pratap 7 years, 6 months ago

100
  • 1 answers

Sia ? 6 years, 6 months ago

  1. 867 = 255 {tex}\times{/tex} 3 + 102
    255 = 102 {tex}\times{/tex} 2 + 51
    102 = 51 {tex}\times{/tex} 2 + 0
    {tex}\Rightarrow{/tex} HCF = 51
  2. 616 = 32{tex}\times{/tex}19 + 8
    32 = 8 {tex}\times{/tex}4 + 0
    {tex}\Rightarrow{/tex}HCF = 8
  • 1 answers

Sia ? 6 years, 6 months ago

The LCM of 28 and 32
28 = 2× 2 × 7=22×7
32 = 2 × 2 × 2 × 2 × 2=25

LCM = 25 × 7 = 224

Smallest no: which leaves remainder 8 and 12 when divided by 28 and 32

= LCM of 8 & 12 = 224 - 20 = 204

Therefore, 204 is smallest number which when divided by 28 and 32  leaves remainder  8 and 12 respectively.

  • 1 answers

Sia ? 6 years, 6 months ago

We have to  find the greatest number that divides 445, 572 and 699 and leaves remainders of 4, 5 and 6 respectively. This means when the number divides 445, 572 and 699 leaves remainders 4, 5 and 6 is that
445 - 4 = 441, 572 - 5 = 567 and 699 - 6 = 693 are completely divisible by the  required number.For the highest number which divides the above numbers can be calculated by HCF .
Therefore, the required number  is the  H.C.F. of 441, 567 and 693 Respectively.
First, consider 441 and 567.
By applying Euclid’s division lemma, we get
567 = 441 {tex}\times{/tex} 1 + 126
441 = 126 {tex}\times{/tex} 3 + 63
126 = 63 {tex}\times{/tex} 2 + 0.
Therefore, H.C.F. of 441 and 567 = 63
Now, consider 63 and 693
again we have to  apply Euclid’s division lemma, we get
693 = 63 {tex}\times{/tex} 11 + 0.
Therefore, H.C.F. of 441, 567 and 693  is  63
Hence, the required number is 63. 63 is the highest number which divides 445,572 and 699 will leave 4,5 and 6 as remainder respectively.

  • 1 answers

Atharva Patel 7 years, 6 months ago

Complete the question
  • 1 answers

Sia ? 6 years, 6 months ago


Let the radius of the hemispherical dome be r and the total height of the building be h.
Since, the internal diameter of the dome is equal to its total height
2r = h
{tex}\Rightarrow r = \frac { h } { 2 }{/tex}
Let H be the height of the cylindrical position.
{tex}\Rightarrow H = h - r = h - \frac { h } { 2 } = \frac { h } { 2 }{/tex}
Volume of  air inside the building = Volume of air inside the dome + Volume of air inside the cylinder
{tex}\Rightarrow 41 \frac { 19 } { 21 } = \frac { 2 } { 3 } \pi r ^ { 3 } + \pi r ^ { 2 } H{/tex}
{tex}\Rightarrow \frac { 880 } { 21 } = \pi r ^ { 2 } \left( \frac { 2 } { 3 } r + H \right){/tex}
{tex}\Rightarrow \frac { 880 } { 21 } = \frac { 22 } { 7 } \times \left( \frac { h } { 2 } \right) ^ { 2 } \left( \frac { 2 } { 3 } \times \frac { h } { 2 } + \frac { h } { 2 } \right){/tex}
{tex}\Rightarrow \frac { 880 \times 7 } { 22 \times 21 } = \frac { h ^ { 2 } } { 4 } \times \left( \frac { h } { 3 } + \frac { h } { 2 } \right){/tex}
{tex}\Rightarrow \frac { 40 \times 4 } { 3 } = h ^ { 2 } \times \left( \frac { 5 h } { 6 } \right){/tex}
{tex}\Rightarrow \frac { 40 \times 4 \times 6 } { 3 \times 5 } = h ^ { 3 }{/tex}
{tex}\Rightarrow h ^ { 3 } = 64{/tex}
{tex}\Rightarrow h = 4{/tex}
Thus, the height of the building is 4 m.

  • 5 answers

Kannu Kranti Yadav 7 years, 6 months ago

Is que se neche ek que hai vo padh le usme bhi likha hai plants take O2 and realease CO2

Kannu Kranti Yadav 7 years, 6 months ago

Actually priyanshu,plants take CO2 and O2 both.I had studied in a book.when photosynthesis stops plants take O2 .

Priyanshu Kumar 7 years, 6 months ago

How plants take O2 for photosynthesis ??????

Priyanshu Kumar 7 years, 6 months ago

What the answer is this

Kannu Kranti Yadav 7 years, 6 months ago

Plants take O2 and under goes photosynthesis and during this CO2 and O2 is produced.that CO2 is used by plants and O2 released.
  • 1 answers

Sia ? 6 years, 6 months ago

Check formulae in notes : <a href="https://mycbseguide.com/cbse-revision-notes.html">https://mycbseguide.com/cbse-revision-notes.html</a>

  • 2 answers

Yuv Raj 7 years, 6 months ago

And plot them to the graph....as graph is not a straight line you required more then 5 coordinate...

Yuv Raj 7 years, 6 months ago

Just , do = y to the equation ....and find the coodinates like the linear equation as putting values of X and Y
  • 4 answers

Adarsh Kumar 7 years, 6 months ago

1/2

Nishi K 7 years, 6 months ago

1/2

Vansh Sehgal 7 years, 6 months ago

The value of sin30° 0.5

Anurag Singh 7 years, 6 months ago

0.5
  • 3 answers

Nishi K 7 years, 6 months ago

If 7 sin square A+3cos squareA=4, show that tanA=1/√3.

Nishi K 7 years, 6 months ago

This question is wrong.

..... ...... 7 years, 6 months ago

Kindly check your question. It seems wrong.☺☺☺
  • 1 answers

Nishi K 7 years, 6 months ago

Wrong question
  • 1 answers

Lucky Arya 7 years, 6 months ago

-x^2-2√3x+9 -x^2-3√3x+√3x+9 -x(x+3√3)+√3(x+3√3) (-x+√3) (x+3√3)
  • 1 answers

Sia ? 6 years, 6 months ago

Check CBSE updates here : <a href="https://mycbseguide.com/blog/">https://mycbseguide.com/blog/</a>

  • 0 answers
  • 2 answers

Siddhant Singh 7 years, 6 months ago

9

Satwika Gautam 5 years, 8 months ago

hi
  • 1 answers

Vishal Pratap Singh Vishal 7 years, 6 months ago

See ncert mathematics 10 ch statistics
  • 1 answers

Sia ? 6 years, 6 months ago

Since, there are 60 minutes gap between 2 PM & 3 PM.
Time needed by minutes hand after t minutes past 2 PM to show 3 PM = (60 - t) minutes
According to the question ;
60 - t = {tex}\frac{t^2}{4}{/tex} - 3
{tex}\Rightarrow{/tex} 63 = {tex}\frac{t^2}{4}{/tex} + t
{tex}\Rightarrow{/tex} 63 = {tex}\frac{t^2 + 4t}{4}{/tex}
{tex}\Rightarrow{/tex} 252 = t2 + 4t
{tex}\Rightarrow{/tex} t2 + 4t - 252 = 0
{tex}\Rightarrow{/tex} t2 + 18t - 14t - 252 = 0
{tex}\Rightarrow{/tex} t(t + 18) - 14(t + 8) = 0
{tex}\Rightarrow{/tex} (t + 18)(t - 14) = 0
{tex}\Rightarrow{/tex}  t + 18 = 0 or t - 14 = 0
{tex}\Rightarrow{/tex} t = -18 or t = 14
Since time cannot be negative, t {tex}\neq{/tex} -18
Hence, t = 14 minutes.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App