Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Siddharth Ghode 7 years, 6 months ago
- 1 answers
Posted by Angel ☺☺☺ Manu 7 years, 6 months ago
- 2 answers
Posted by Jaya Dev 7 years, 6 months ago
- 0 answers
Posted by Roshan Raj 7 years, 6 months ago
- 1 answers
Posted by Lohith Lohith 7 years, 6 months ago
- 2 answers
Posted by Palzor Tamang 7 years, 6 months ago
- 0 answers
Posted by Abinesh Abi 7 years, 6 months ago
- 3 answers
Om Zankat 7 years, 6 months ago
Manu Prajapati 7 years, 6 months ago
Muskan Agarwal 7 years, 6 months ago
Posted by Dhananjay Prasad 6 years, 6 months ago
- 2 answers
Sia ? 6 years, 6 months ago
The given system of equations are:
(a - b)x + (a + b)y = 2a2 - 2b2
So, (a - b)x + (a + b)y - 2a2 - 2b2 = 0
(a - b)x + (a + b)y - 2(a2 - b2) = 0 ........(i)
And (a + b)(x + y) = 4ab
So, (a +b)x + (a + b)y - 4ab = 0 ..........(ii)
The given system of equation is in the form of
a1x + b1y - c1 = 0
and a2x + b2y - c2 = 0
Compare (i) and (ii) , we get
a1 = a - b, b1 = a + b, c1 = -2(a2 + b2)
a2 = a + b, b2 = a + b, c2 = -4ab
By cross-multiplication method
{tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}}{/tex} {tex} = \frac{{ - y}}{{2(a - b)({a^2} + {b^2})}}{/tex} {tex} = \frac{1}{{ - 2b(a + b)}}{/tex}
Now, {tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}} = \frac{1}{{ - 2b(a + b)}}{/tex} {tex}{/tex}
{tex}⇒ x = \frac{{2ab - {a^2} + {b^2}}}{b}{/tex}
And, {tex}\frac{{ - y}}{{2(a - b)({a^2} + {b^2})}} = \frac{1}{{ - 2b(a + b)}} {/tex}
{tex}⇒ y = \frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex}
The solution of the system of equations are {tex}\frac{{2ab - {a^2} + {b^2}}}{b}{/tex} and {tex}\frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex} respectively.
Posted by Prachi Singh 7 years, 6 months ago
- 2 answers
Durga Kumari 7 years, 6 months ago
Posted by Sarthak Arora 7 years, 6 months ago
- 0 answers
Posted by Manpreet Kaur 7 years, 6 months ago
- 2 answers
Posted by Anu Thakur 7 years, 6 months ago
- 0 answers
Posted by Amandeep Singh 5 years, 8 months ago
- 1 answers
Posted by Srishti Pandey 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given linear equation is
(3k + 1)x + 3 y - 2 = 0 .......... (i)
(k2 + 1)x + (k - 2)y - 5 = 0 ............ (ii)
Compare with a1x + b1y + c = 0 and a2x + b2y and c2 = 0
a1 = 3k + 1 , b1 = 3 , c1 = -2
and a2 = k2+ 1 , b2 = k - 2, c2 = -5
The given system of equations will have no solution, if
{tex} \frac { a_1 } { a_2 } = \frac { b_1 } { b_2} \neq \frac { c_1 } { c_2 }{/tex}
{tex} \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \neq \frac { - 2 } { - 5 }{/tex}
{tex}\Rightarrow \quad \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \text { and } \frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex}
Now, {tex}\frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 }{/tex}
{tex}\Rightarrow{/tex} (3k + 1)(k - 2)=3(k2 + 1)
{tex}\Rightarrow{/tex} 3k2 - 5k - 2 =3k2 + 3
{tex}\Rightarrow{/tex} -5k - 2 =3
{tex}\Rightarrow{/tex} -5k = 5
{tex}\Rightarrow{/tex} k = -1
Clearly, {tex}\frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex} for k = -1.
Hence, the given system of equations will have no solution for k = -1.
Posted by Aman Pandey 7 years, 6 months ago
- 1 answers
Posted by Gaurav Kumar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
We do not know whether {tex} \frac { a } { b } < \frac { a + 2 b } { a + b } \text { or, } \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}.
Therefore, to compare these two numbers, let us compute {tex} \frac { a } { b } - \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} \frac { a } { b } - \frac { a + 2 b } { a + b } = \frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex} {tex} = \frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}
{tex} \therefore \quad \frac { a } { b } - \frac { a + 2 b } { a + b } > 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}
{tex} \Rightarrow{/tex} a2 - 2b2 > 0
{tex} \Rightarrow{/tex} a2> 2b2
{tex} \Rightarrow \quad a > \sqrt { 2 } b{/tex}
and, {tex} \frac { a } { b } - \frac { a + 2 b } { a + b } < 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}
{tex} \Rightarrow{/tex} a2 - 2b2 < 0
{tex} \Rightarrow{/tex}a2 <2b2
{tex} \Rightarrow \quad a < \sqrt { 2 } b{/tex}
Thus, {tex} \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}, if {tex}a > \sqrt { 2 b }{/tex} and {tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}, if {tex} a < \sqrt { 2 } b{/tex}.
So, we have the following cases:
CASE I When {tex} a > \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } > \frac { a + 2 b } { a + b } \text { i.e., } \frac { a + 2 b } { a + b } < \frac { a } { b }{/tex}
We have to prove that
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
We have,
{tex} a > \sqrt { 2 } b{/tex}
{tex} \Rightarrow{/tex} a2> 2b2 [Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } > \left( a ^ { 2 } + 2 b ^ { 2 } \right) + 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + b ^ { 2 } \right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + 2 a b + b ^ { 2 } \right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } ( a + b ) > a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } > \frac { a + 2 b } { a + b }{/tex} ........(i)
Again,
{tex} a > \sqrt { 2 } b {/tex}
{tex}\Rightarrow \frac { a } { b } > \sqrt { 2 }{/tex} .......(ii)
From (i) and (ii), we get
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
CASE II When {tex} a < \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}
We have to show that {tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} a < \sqrt { 2 } b{/tex}
{tex} \Rightarrow \quad a ^ { 2 } < 2 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex} [Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex}\Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \sqrt { 2 } ( a + b ) < a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex} . ...(iii)
{tex} \Rightarrow \quad a < \sqrt { 2 } b \Rightarrow \frac { a } { b } < \sqrt { 2 }{/tex} ....(iv)
From (iii) and (iv), we get
{tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
Hence, {tex} \sqrt { 2 }{/tex} lies between {tex} \frac { a } { b }{/tex} and {tex} \frac { a + 2 b } { a + b }{/tex}.
Posted by Krishna Verms 7 years, 6 months ago
- 0 answers
Posted by Soni Sah 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Taking different values of n, we find that A and B are co-prime.
When {tex}n = 1, A = 5, B = 8{/tex}
When {tex}n = 2, A = 7, B = 9{/tex}
When {tex}n = 3, A = 9, B = 10{/tex} and so on....
Therefore, {tex}HCF = 1{/tex}
Posted by Amit Shakya 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
HCF of 56 and 72
{tex}\begin{array}{l}56=8\times7=2^3\times7\\72=8\times9=2^3\times3^2\\So\;HCF(56,72)=2^3=8\end{array}{/tex}
d = 56x + 72y
⇒ 8 = 56x + 72y
Dividing by 8 both sides
1= 7x + 9y
Put x = 4 and y = –3
1 = 7 × 4 + 9(–3)
= 28 – 27
1 = 1
L.H.S = R.H.S.
Put x = –5 and y = 4
1 = 7(–5) + 9 {tex} \times {/tex} 4
= –35 + 36
1 = 1
L.H.S = R.H.S.
x = 4, and y = –3
x = –5 and y = 4
Satisfy the equations
∴ x and y are not unique.
Posted by Puja Saikia 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
{tex}\frac { 10 } { x + y } + \frac { 2 } { x - y } = 4{/tex}
{tex}\frac { 15 } { x + y } - \frac { 9 } { x - y } = - 2{/tex}.
Putting {tex}\frac 1{x+y}{/tex}=u and {tex}\frac 1{x-y}{/tex}= v ,the given equations
{tex}10u + 2v= 4{/tex}........(i)
{tex}15u - 9v = -2{/tex}.......(ii)
Multiplying (i) by 9 and (ii) by 2 and adding them,
{tex}\Rightarrow{/tex} {tex}90 u + 18 v = 36\ and\ 30u - 18v = -4{/tex}
{tex}\Rightarrow 120u = 32{/tex}
{tex}\Rightarrow u = \frac{4}{15}{/tex}
Substituting u = {tex}\frac{4}{15}{/tex} in (i), we get v = {tex}\frac { 2 } { 3 }{/tex}
{tex}\Rightarrow \frac { 1 } { x + y } = \frac { 4 } { 15 } \text { and } \frac { 1 } { x - y } = \frac { 2 } { 3 }{/tex}
{tex}\Rightarrow x + y = \frac { 15 } { 4 }{/tex} .......(iii)
and {tex}x - y = \frac { 3 } { 2 }{/tex} ......(iv)
Adding (iii) and (iv),
{tex}\Rightarrow 2 x = \frac { 21 } { 4 } \Rightarrow x = \frac { 21 } { 8 }{/tex}
Substituting x ={tex}\frac { 21 } { 8}{/tex} in (iii), we get {tex}y = \frac { 9 } { 8 }{/tex}
Hence, the solution is {tex}x = \frac { 21 } { 8 } \text { and } v = \frac { 9 } { 8 }{/tex}
Posted by Kunal More 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given numbers are 657 and 963 .
Here, 657 < 963
By using Euclid's Division algorithmm , we get
963 = (657 × 1) + 306
Here , remainder = 306 .
So, On taking 657 as new dividend and 306 as the new divisor and then apply Euclid's Division lemma, we get
657 = (306 × 2) + 45
Here, remainder = 45
So, On taking 306 as new dividend and 45 as the new divisor and then apply Euclid's Division lemma, we get
306 = (45 × 6) + 36
Here, remainder = 36
So, On taking 45 as new dividend and 36 as the new divisor and then apply Euclid's Division lemma, we get
45 = (36 × 1) + 9
Here, remainder = 9
So, On taking 36 as new dividend and 9 as the new divisor and then apply Euclid's Division lemma, we get
36 = (9 × 4) + 0
Here , remainder = 0 and last divisor is 9.
Hence, HCF of 657 and 963 = 9.
∴ 9 = 657x + 963(-15)
⇒ 9 = 657x - 14445
⇒ 657x = 9 + 14445
⇒ 657x = 14454
⇒x = 14454/657
⇒ x =22
Posted by Omprakash Nayak 7 years, 6 months ago
- 1 answers
Posted by Ritesh Barnwal 7 years, 6 months ago
- 1 answers
Ritu Sena 4 years, 6 months ago
Posted by Nikhil Karwasra 7 years, 6 months ago
- 1 answers
Rajendra Kumar Awasthi 7 years, 6 months ago
Posted by Manish Kumar Yadav 7 years, 6 months ago
- 1 answers
Posted by Prabhav Patel 7 years, 6 months ago
- 1 answers
Kranti Yadav 7 years, 6 months ago
Posted by Proyansh Patel 7 years, 6 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Dheeraj Verma 7 years, 6 months ago
2Thank You