No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Since,
Sum of the zeroes of polynomial = α + β {tex}= \frac{{ - b}}{a}{/tex}
and product of zeroes of polynomial = αβ {tex}= \frac{c}{a}{/tex}
Simplify the given expression and substitutie the values, we obtain
{tex}\frac{\beta }{{a\alpha + b}} + \frac{\alpha }{{a\beta + b}}{/tex}{tex}= \frac{{\beta \left( {a\beta + b} \right) + \alpha \left( {a\alpha + b} \right)}}{{\left( {a\alpha + b} \right)\left( {a\beta + b} \right)}}{/tex}    
{tex}= \frac{{\alpha {\beta ^2} + b\beta + \alpha^2 {a} + b\alpha }}{{{a^2}\alpha \beta + ab\alpha + ab\beta + {b^2}}}{/tex}
{tex} = \frac{{a{\alpha ^2} + b{\beta ^2} + b\alpha + b\beta }}{{{a^2} \times \frac{c}{a} + ab\left( {\alpha + \beta } \right) + {b^2}}}{/tex}
{tex}=\frac{{a\left[ {{{\left( {\alpha + \beta } \right)}^2} + b\left( {\alpha + \beta } \right)} \right]}}{{ac}}{/tex}
{tex} = \frac{{a\left[ {{{\left( {a + \beta } \right)}^2} - 2\alpha \beta } \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex}= \frac{{a\left[ {\frac{{{b^2}}}{a} - \frac{{2c}}{a}} \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex} = \frac{{a\left[ {\frac{{{b^2} - ac}}{a}} \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex}= \frac{{a\left[ {\frac{{{b^2} - ac - {b^2}}}{a}} \right]}}{{ac}}{/tex}
{tex}= \frac{{{b^2} - 2c - {b^2}}}{{ac}}{/tex}
{tex}= \frac{{ - 2c}}{{ac}} = \frac{{ - 2}}{a}{/tex}

  • 3 answers

Manu Prajapati 7 years, 6 months ago

Science

Jin Kazama 7 years, 6 months ago

PCB

Aryan Nigam 7 years, 6 months ago

Science
  • 1 answers

Jeenay Patel 7 years, 6 months ago

Question is incomplete
  • 1 answers

Sia ? 6 years, 6 months ago

The given pair of linear equation is
3x + y = 1,  (2k - 1) x + (k - 1) y = 2k + 1
{tex}\Rightarrow{/tex} 3x + y - 1 = 0
Here, (2k - 1)x + (k - 1) y - (2k + 1) = 0
a1 = 3, b1 = 1, c1 = -1
a2 = 2k - 1, b2 = k - 1, c2 = -(2k + 1)
for having no solution, we must have {tex}\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} \ne \frac{{{c_1}}}{{{c_2}}}{/tex}
{tex}\Rightarrow \frac{3}{{2k - 1}} = \frac{1}{{k - 1}} \ne \frac{{ - 1}}{{ - (2k + 1)}}{/tex}
From above we have {tex}\frac{3}{{2k - 1}} = \frac{1}{{k - 1}}{/tex}
{tex}\Rightarrow{/tex} 3(k - 1) = 2k - 1
{tex}\Rightarrow{/tex} 3k - 3 = 2k - 1
{tex}\Rightarrow{/tex} 3k - 2k = 3 - 1
{tex}\Rightarrow{/tex} k = 2
Hence, the required value of k is 2.

  • 1 answers

Priyanshi Patel 7 years, 6 months ago

What do you mean by Rdvhhghu ?
  • 1 answers

Tanya Sharmaa 7 years, 6 months ago

It's very simple Firstly take 2 numbers Let we take 5 and 10 Now make the factors of 5 and 10 5= 5×1 10= 2×5 now we take 5 common and multiply the left values by 5 LCM = 2×1×5 = 10 So by this way u can find the lcm of 2 numbers
  • 1 answers

Jeenay Patel 7 years, 6 months ago

Let 1/y be a (2x-3a=9 )3 (3x+7a=2. )2 By elimination method 6x-9a=27. 6x+14a=4 - - - __________ 0x-23a=23 -23a=23 a=23/-23 a=-1 2x-3(-1)=9 2x+3=9 2x=9-3 x=6/2 x=3 1/y=a 1/y=-1 y=-1 (x,y)=(3,-1)
  • 1 answers

Mohd Hussain 7 years, 6 months ago

let it a ration no. and then prove it according to the ex of NCERT book
  • 6 answers

Gulshan Kumar Yadav 7 years, 6 months ago

JIN KAZAMA you are right but in that following question there is no specific condition then on what behalf you have given this type of explanation because your explanation consists of terms ,cases and conditions .but what ever it is i would like to become your homework friend and one of the compatitor

Gulshan Kumar Yadav 7 years, 6 months ago

thanks Jin Kazama

Jin Kazama 7 years, 6 months ago

Well if you go for a bit more accuracy and practical experience, it is not true! 1kg of cotton will weigh slightly less than 1kg Iron. . Here is the explanation. 1. Density of cotton is much less than iron. 2. Hence the total volume of 1 kg cotton will be much higher than 1 kg iron. 3. So 1 Kg cotton will displace more air than 1 kg iron. 4. A larger buoyant force will act on cotton in relative to iron. - Buoyant force being equal to the weight of the fluid being displaced. 5. Result will be slight decrease in weight.In vacuum both will weigh the same

Gulshan Kumar Yadav 7 years, 6 months ago

may be you can able to understand my explanation

Gulshan Kumar Yadav 7 years, 6 months ago

in this case both have same mass but different weight due to there different surface areas the force of drag(frictional force applied by air ) will be less and also relative density of cotton is more and surface area is also more so the force is diverted to a larger area (p=m/a)

Mayank Parauha 7 years, 6 months ago

Both weight are same
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\frac{1}{3}\pi h({r_1}^2 + {r_2}^2 + {r_1}{r_2}){\text{ }}c{m^3}{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

Let us draw a right triangle ABC in which {tex}\angle B A C = \theta{/tex}
{tex}\sin \theta = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } }{/tex} ...... Given
{tex}\Rightarrow \frac { B C } { A C } = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } } \Rightarrow \frac { B C } { a ^ { 2 } - b ^ { 2 } } = \frac { A C } { a ^ { 2 } + b ^ { 2 } } = k ( \text { say } ){/tex}
where k is a positive number.
{tex}\Rightarrow B C = k \left( a ^ { 2 } - b ^ { 2 } \right){/tex}
{tex}A C = k \left( a ^ { 2 } + b ^ { 2 } \right){/tex}
In {tex}\Delta A B C{/tex}
{tex}\because \angle B = 90 ^ { \circ }{/tex}
{tex}\therefore A C ^ { 2 } = A B ^ { 2 } + B C ^ { 2 } \ldots \ldots{/tex} By Pythagoras theorem
{tex}\Rightarrow \mathrm { k } ^ { 2 } \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } \right) ^ { 2 } = \mathrm { AB } ^ { 2 } + \mathrm { k } ^ { 2 } \left( \mathrm { a } ^ { 2 } - \mathrm { b } ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow A B ^ { 2 } = k ^ { 2 } \left\{ \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } - \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } \right\}{/tex}
{tex}\Rightarrow A B ^ { 2 } = k ^ { 2 } \left( 4 a ^ { 2 } b ^ { 2 } \right) \Rightarrow A B = 2 a b k{/tex}
 
Therefore,
{tex}\cos \theta = \frac { A B } { A C } = \frac { 2 a b k } { k \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 2 a b } { a ^ { 2 } + b ^ { 2 } }{/tex}
{tex}\tan \theta = \frac { B C } { A B } = \frac { k \left( a ^ { 2 } - b ^ { 2 } \right) } { 2 a b k } = \frac { a ^ { 2 } - b ^ { 2 } } { 2 a b }{/tex}
{tex}cosec \theta = \frac { A C } { B C } = \frac { k \left( a ^ { 2 } + b ^ { 2 } \right) } { k \left( a ^ { 2 } - b ^ { 2 } \right) } = \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } }{/tex}
{tex}\sec \theta = \frac { A C } { A B } = \frac { k \left( a ^ { 2 } + b ^ { 2 } \right) } { 2 a b k } = \frac { a ^ { 2 } + b ^ { 2 } } { 2 a b }{/tex}
{tex}\cot \theta = \frac { A B } { B C } = \frac { 2 a b k } { k \left( a ^ { 2 } - b ^ { 2 } \right) } = \frac { 2 a b } { a ^ { 2 } - b ^ { 2 } }{/tex}

  • 7 answers

Jin Kazama 7 years, 6 months ago

Well friends 99999is also a number

Jin Kazama 7 years, 6 months ago

Infinite

Divanshu Rawat 7 years, 6 months ago

Brother Rajiv , 9 is greatest digit not number

Rajiv Ranjan 7 years, 6 months ago

You dont ask greatest 5 digit no you only ask number then 9 is the right answer

Varun Srivastav 7 years, 6 months ago

Tell the Digits

Rajiv Ranjan 7 years, 6 months ago

9

Sourav Rajput 7 years, 6 months ago

99999
  • 3 answers

Divanshu Rawat 7 years, 6 months ago

2

Risabh Pandey 7 years, 6 months ago

2

Ayush Kumar Mishra 7 years, 6 months ago

2
  • 1 answers

Rajiv Ranjan 7 years, 6 months ago

X=a and y =b
  • 0 answers
  • 3 answers

Abhishek Varma 7 years, 6 months ago

First R.S aggarwal then oswaal and try R.D sharma while preparing for finals.

Prachi Singh 7 years, 6 months ago

RD Sharma, 100% Success, Exam-Idea

Ankit Razz 7 years, 6 months ago

S N Upadhaya book
  • 1 answers

Neethu Jaisan 7 years, 6 months ago

1. 022099
  • 3 answers

Rajiv Ranjan 7 years, 6 months ago

Not

Rajiv Ranjan 7 years, 6 months ago

This type of question is note for class 10 students

Neethu Jaisan 7 years, 6 months ago

1010
  • 5 answers

Ritu Sena 7 years, 6 months ago

Varun.... I think u have got your answer...

Ritu Sena 7 years, 6 months ago

Researchers have told water boosts your mental health or performance

Divya Kumari 7 years, 6 months ago

Study Ncrt deeply then after goes to other extra books

Varun Srivastav 7 years, 6 months ago

Ritu whats the role of water i know its too hot temperature but like to know what water does... In prepartion of exams

Ritu Sena 7 years, 6 months ago

Know your weakness,try to overcome it. Be thorough with the book and revise them as much as you can. Give sufficient time to studies. Practice previous year question papers. Take regular breaks during study time. Drink sufficient water......
  • 2 answers

Manu Prajapati 7 years, 6 months ago

You can see it, in this in ncrt solution

Rajiv Ranjan 7 years, 6 months ago

Please guys try it quickly ✍️✍️✍️✍️
  • 2 answers

Divanshu Rawat 7 years, 6 months ago

The two numbers are 156 and 157

Rajiv Ranjan 7 years, 6 months ago

. The two numbers are 12 and 13.
  • 1 answers

Sia ? 6 years, 6 months ago

Let three consecutive numbers be x, (x + 1) and (x + 2)
Let x = 6q + r 0 {tex}\leq r < 6{/tex}
{tex}\therefore x = 6 q , 6 q + 1,6 q + 2,6 q + 3,6 q + 4,6 q + 5{/tex}
{tex}\text { product of } x ( x + 1 ) ( x + 2 ) = 6 q ( 6 q + 1 ) ( 6 q + 2 ){/tex}
if x = 6q then which is divisible by 6
{tex}\text { if } x = 6 q + 1{/tex}
{tex}= ( 6 q + 1 ) ( 6 q + 2 ) ( 6 q + 3 ){/tex}
{tex}= 2 ( 3 q + 1 ) .3 ( 2 q + 1 ) ( 6 q + 1 ){/tex}
{tex}= 6 ( 3 q + 1 ) \cdot ( 2 q + 1 ) ( 6 q + 1 ){/tex}
which is divisible by 6
if x = 6q + 2
{tex}= ( 6 q + 2 ) ( 6 q + 3 ) ( 6 q + 4 ){/tex}
{tex}= 3 ( 2 q + 1 ) .2 ( 3 q + 1 ) ( 6 q + 4 ){/tex}
{tex}= 6 ( 2 q + 1 ) \cdot ( 3 q + 1 ) ( 6 q + 1 ){/tex}
Which is divisible by 6
{tex}\text { if } x = 6 q + 3{/tex}
{tex}= ( 6 q + 3 ) ( 6 q + 4 ) ( 6 q + 5 ){/tex}
{tex}= 6 ( 2 q + 1 ) ( 3 q + 2 ) ( 6 q + 5 ){/tex}
which is divisible by 6
{tex}\text { if } x = 6 q + 4{/tex}
{tex}= ( 6 q + 4 ) ( 6 q + 5 ) ( 6 q + 6 ){/tex}
{tex}= 6 ( 6 q + 4 ) ( 6 q + 5 ) ( q + 1 ){/tex}
which is divisible by 6
if x = 6q + 5
{tex}= ( 6 q + 5 ) ( 6 q + 6 ) ( 6 q + 7 ){/tex}
{tex}= 6 ( 6 q + 5 ) ( q + 1 ) ( 6 q + 7 ){/tex}
which is divisible by 6
{tex}\therefore {/tex} the product of any three natural numbers is divisible by 6.

  • 2 answers

Pratibha Kumari 7 years, 6 months ago

Cos A =15/17, Tan A =8/15, Cosec A =17/8, Sec A =17/15, Cot A =15/8

Rajiv Ranjan 7 years, 6 months ago

Sin a=8/17 Cos a=15/17 Tan a=8/15 Cosec a=17/8 Sec a=17/15 Cot a=15/8
  • 5 answers

Varun Srivastav 7 years, 6 months ago

In second question u have to show postive odd integer in 6q+1..... So u use (a=bq+r where r=0,1,2,3,4,5)

Varun Srivastav 7 years, 6 months ago

Sorry bro i dont know why its not coming But u can refer page 3, theorem 1.1

Varun Srivastav 7 years, 6 months ago

0<r<b

Varun Srivastav 7 years, 6 months ago

In First question u have to find HCF by Euclid division lemma So u have to perform Division method to find it ( a =bq+r) where 0<r>b

Rajiv Ranjan 7 years, 6 months ago

Solution dekh ke samajh lo

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App