No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Bhargav Singh 7 years, 5 months ago

X square -6x- 2/3
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
f(x) = 4x- 4x + 1
= 4x- 2x -2x + 1
 = 2x (2x - 1) - 1 (2x - 1)
= (2x - 1)(2x - 1)

Now f(x)=0 if 2x-1 =0

hence zeros of f(x) are {tex}\frac12{/tex} and  {tex}\frac12{/tex}

 sum of zeros = {tex} \frac { 1 } { 2 } + \frac { 1 } { 2 } = 1 {/tex}

product of zeros = {tex}\frac12{/tex} {tex}\times \frac12 =\frac14 {/tex}
In f(x) = 4x- 4x + 1

a=4, b=-4,c=1

{tex}\style{font-family:Arial}{\style{font-size:14px}{\begin{array}{l}\text{sum of zeros=-}\frac ba=-\frac{-4}4=1\\\text{Product of zeros=}\frac ca=\frac14\end{array}}}{/tex}

Hence the relation of zeros and coefficients is verified.

  • 1 answers

Wahith Meeran 7 years, 5 months ago

50 rupees notes be x and 100 rupee notes be y. x+y=25____1 50x+100y=2000________2 Mulitply 50 on first equation Change the sign Now cancel the 50x Then we have _50y=_950 Cancel the minus sign 50y=950 Y=950/50 Y=19 Sub y=19in equation 1 x+19=25 x=25_19 X=6
  • 1 answers

Sia ? 6 years, 6 months ago

f(x) = 6x2 + x - 2
a = 6, b = 1, c = -2
Let zeroes be  {tex}\alpha{/tex} and  β.Then
Sum of zeroes= {tex}\alpha{/tex} + β  {tex}=\;-\frac ba\;=-\frac16{/tex}
Product of zeroes {tex}\alpha{/tex}× β  {tex}=\;\;\frac ca\;=\;\frac{-2}6\;=\;-\frac13{/tex}
{tex}\frac { \alpha } { \beta } + \frac { \beta } { \alpha } = \frac { \alpha ^ { 2 } + \beta ^ { 2 } } { \alpha \beta }{/tex}
{tex}= \frac { ( \alpha + \beta ) ^ { 2 } - 2 \alpha \beta } { \alpha \beta } \left[ \because ( \alpha + \beta ) ^ { 2 } = \alpha ^ { 2 } + \beta ^ { 2 } + 2 \alpha \beta \right]{/tex}
{tex}= \frac { \left[- \frac { 1 } { 6 } \right] ^ { 2 } - 2 \left[ - \frac { 1 } { 3 } \right] } { \left[ - \frac { 1 } { 3 } \right] }{/tex}
{tex}= \frac { \frac { 1 } { 36 } + \frac { 2 } { 3 } } { - \frac { 1 } { 3 } }{/tex}
{tex}= \frac { \frac { 1 + 24 } { 36 } } { - \frac { 1 } { 3 } }{/tex}
{tex}= \frac { 25 } { 36 } \times \frac { - 3 } { 1 }{/tex}
{tex}= \frac { - 25 } { 12 }{/tex}

  • 1 answers

Khushi Chahal 7 years, 5 months ago

3! + 13+ 11 = 30 ! Means factorial Or (19-1) + 7 + 5 = 30 Other than these, there is no valid solution of it.
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Then,
{tex}T _ { 7 } = \frac { 1 } { 9 } \Rightarrow a + 6 d = \frac { 1 } { 9 }{/tex} ...(i)
{tex}T _ { 9 } = \frac { 1 } { 7 } \Rightarrow a + 8 d = \frac { 1 } { 7 }{/tex} ...(i)
On subtracting (i) from (ii), we get
{tex}2 d = \left( \frac { 1 } { 7 } - \frac { 1 } { 9 } \right) = \frac { 2 } { 63 } \Rightarrow d = \left( \frac { 1 } { 2 } \times \frac { 2 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Putting d = {tex}\frac { 1 } { 63 }{/tex}in (i), we get
{tex}a + \left( 6 \times \frac { 1 } { 63 } \right) = \frac { 1 } { 9 } \Rightarrow a + \frac { 2 } { 21 } = \frac { 1 } { 9 } \Rightarrow a = \left( \frac { 1 } { 9 } - \frac { 2 } { 21 } \right) = \left( \frac { 7 - 6 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Thus, a = {tex}\frac { 1 } { 63 }{/tex} and d = {tex}\frac { 1 } { 63 }.{/tex}
{tex}\therefore{/tex} T63 = a + (63-1)d = (a + 62d)
{tex}= \left( \frac { 1 } { 63 } + 62 \times \frac { 1 } { 63 } \right) = \left( \frac { 1 } { 63 } + \frac { 62 } { 63 } \right) = 1.{/tex}
Hence, 63rd term of the given AP is 1.

  • 0 answers
  • 5 answers

Subhas Hegde 7 years, 5 months ago

1.414213562

Navin Yadav 7 years, 5 months ago

1.4142135623730950488

Priyanka Chaurasiya 7 years, 5 months ago

1.414

Sanjay Singh 7 years, 5 months ago

1.414

Yogita Ingle 7 years, 5 months ago

1.414

  • 6 answers

Prashant Sharma 7 years, 5 months ago

Reality me kitne parcent ata ha

Varsha Yadav 7 years, 5 months ago

95percent

Amrita Choudhary 7 years, 5 months ago

60%ncert ayaga

Priyanka Chaurasiya 7 years, 5 months ago

Full 80 marks

Durga Verma 7 years, 5 months ago

80 marks ka exam hota h

Sanjay Singh 7 years, 5 months ago

100 % ncert hota hai

  • 3 answers

Subhas Hegde 7 years, 5 months ago

Euclids

Priyanka Chaurasiya 7 years, 5 months ago

Euclids

Srkkant Roy 7 years, 5 months ago

Euclids
  • 2 answers

Aman Singh 5 years ago

PARALLEL LINES First write both the eqns in ax+by+c=0 form, a1/a2 =18/(9/5) = 10 b1/b2 = -7/(-7/10) = 10 c1/c2 = -24/(-9/10) = 80/3 As (a1/a2) = (b1/b2) ≠ (c1/c2), It will form parallel lines.

Sanjay Singh 7 years, 5 months ago

It will form intersenting limes 

Ans = 00

  • 1 answers

Anusree Unnikrishnan 6 years, 9 months ago

Sn=1,75,000
an=1500. d=175
Amount paid in 21st installment= a21
a21=1500+20(175). =1500+3500. = ₹ 5000
Total amount paid till 21st installment = a21
S21= 21/2 [2(1500)+20(175)]
= 21/2 [3000+5000]
= 21/2 (8000). = 21×4000. =₹84000
Amount of loan to be paid after the 21st installment = 1,75,000-84,000
= ₹ 91,000


  • 0 answers
  • 5 answers

Pratibha K 7 years, 5 months ago

1/6

Mahanta Bhagat 7 years, 5 months ago

-/-6/=-6

Subha Darshini 7 years, 5 months ago

6

Priyanka Chaurasiya 7 years, 5 months ago

6.

Aman Singh 5 years ago

6
  • 4 answers

Diljani . 7 years, 5 months ago

Okk

Durga Verma 7 years, 5 months ago

Ni yrr time ni rhta

Diljani . 7 years, 5 months ago

Brainly nhi chalate ab

Durga Verma 7 years, 5 months ago

Hey Vishu...
  • 2 answers

Pratibha K 7 years, 5 months ago

K=2a+3a^2

Hardik Turankar 7 years, 5 months ago

which part of black sheep have wool
  • 1 answers

Atika Thakur 7 years, 5 months ago

...
  • 1 answers

Mahanta Bhagat 7 years, 5 months ago

The no.s. of the form m and m+1
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App