No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sonakshi Panwar 7 years, 5 months ago

The value of x=1 y=3
  • 2 answers

Anurag Sinha 7 years, 5 months ago

2.443565785 /2.987654321

Sonakshi Panwar 7 years, 5 months ago

2.12345678934562....... 2.76589032467........
  • 3 answers

Raja Raj 7 years, 5 months ago

2sin 2theta=√3 sin 2theta=√3/2 sin 60° 2theta=60° theta=60°/2=30°ans

Sonakshi Panwar 7 years, 5 months ago

Theta=60

Sonakshi Panwar 7 years, 5 months ago

Sin 60
  • 1 answers

Ujjwal Sharma 7 years, 5 months ago

(X= -b±√b²-4ac/2a)
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}5x + 2y = 2k{/tex}
{tex}2(k + 1)x + ky = (3k + 4){/tex}
These are of the form
{tex}a_1x + b_1y + c_1 = 0 , a_2x + b_2y + c_2 = 0{/tex}
where,
{tex}a_1= 5 ,b_1= 2, c_1 = -2k,{/tex}
{tex}a_2= 2(k +1) ,b_2= k ,c_2 = -(3k + 4){/tex}
For infinitely many solutions, we must have
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
This holds only when
{tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k } = \frac { - 2 k } { - ( 3 k + 4 ) }{/tex}
{tex}\Rightarrow \frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k } = \frac { 2 k } { ( 3 k + 4 ) }{/tex}
Now, the following cases arises:
Case 1:
{tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k }{/tex}[Taking I and II]
{tex}\Rightarrow 5 k = 4 ( k + 1 ) \Rightarrow 5 k = 4 k + 4{/tex}
k = 4
Case 2:
{tex}\frac { 2 } { k } = \frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking II and III]
{tex}\Rightarrow{/tex}2(3k + 4) = 2k2 {tex}\Rightarrow{/tex}6k + 8 = 2k2
{tex}\Rightarrow{/tex} {tex}2k^2 - 6k + 8 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}2(k^2 - 3k + 4)= 0{/tex}
{tex}\Rightarrow{/tex}{tex}k^2 - 3k - 4 = 0{/tex}
{tex}\Rightarrow{/tex}{tex}k^2 - 4k + k - 4 = 0{/tex}
{tex}\Rightarrow{/tex}k(k - 4) + 1(k - 4) = 0
{tex}\Rightarrow{/tex}(k - 4)(k + 1) = 0
(k - 4) = 0 or k + 1 = 0
{tex}\Rightarrow{/tex} k = 4 or k = -1
Case 3:
{tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 k } { ( 3 k + 4 ) }{/tex}
[Taking I and II]
{tex}\Rightarrow 15 k + 20 = 4 k ^ { 2 } = 4 k{/tex}
{tex}\Rightarrow{/tex}4k2 + 4k - 15k - 20 = 0
{tex}\Rightarrow{/tex} 4k2 - 11k - 20 = 0
{tex}\Rightarrow{/tex}4k2 - 16k + 5k - 20 =0
{tex}\Rightarrow{/tex}4k(k - 4) + 5(k - 4) = 0
{tex}\Rightarrow{/tex}(k - 4)(4k + 5) = 0
{tex}\Rightarrow k = 4 \text { or } k = \frac { - 5 } { 4 }{/tex}
Thus, k = 4, is the common value of which there are infinitely many solutions.

  • 1 answers

Aparna Chaudhary 7 years, 5 months ago

The will depend on how you prepare for it?
  • 1 answers

Gifty Rose Simon 7 years, 5 months ago

Rohan=x and Rohan's mother =26-x So, the product of their ages =x(26-x)
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}{\frac{1}{{2x}} + \frac{1}{{3y}} = 2}{/tex} ... (1)
{tex}\frac{1}{{3x}} + \frac{1}{{2y}} = \frac{{13}}{6}{/tex} ...(2)
Let {tex}\frac{1}{x}{/tex}= p and {tex}\frac{1}{y}{/tex}= q
Putting this in equation (1) and (2), we get
{tex}\frac{p}{2} + \frac{q}{3} = 2{/tex} and {tex}\;\frac{p}{3} + \frac{q}{2} = \frac{{13}}{6}{/tex}
{tex}\Rightarrow{/tex} 3p + 2q = 12 and 6(2p +3q) = 13 (6)
{tex}\Rightarrow{/tex} 3p + 2q = 12 and 2p + 3q = 13
{tex}\Rightarrow{/tex} 3p + 2q - 12 = 0 .................. (3) and
2p + 3q - 13 = 0 ................. (4)

{tex}\frac{p}{{2( - 13) - 3( - 12)}} = \frac{q}{{( - 12)2 - ( - 13)3}}{/tex}{tex} = \frac{1}{{3 \times 3 - 2 \times 2}}{/tex}
{tex}\Rightarrow \frac{p}{{ - 26 + 36}} = \frac{q}{{ - 24 + 39}} = \frac{1}{{9 - 4}}{/tex}
{tex} \Rightarrow \frac{p}{{10}} = \frac{q}{{15}} = \frac{1}{5} \Rightarrow \frac{p}{{10}} = \frac{1}{5}\,{\text{and}}\,\frac{q}{{15}} = \frac{1}{5}{/tex}
{tex}\Rightarrow{/tex} p = 2 and q = 3
But {tex}\frac{1}{x}{/tex} = p and {tex}\frac{1}{y}{/tex} = q
Putting value of p and q in this we get,
x = {tex}\frac{1}{2}{/tex}and y = {tex}\frac{1}{2}{/tex}

  • 1 answers

Pratiksha Kiran 7 years, 5 months ago

You know that any +ve integer is of the form ,3m or 3m+1.now let x be any +ve integer and b=3 .therefore you have 3 cases 3m,3m+1and 3m+2.now cube all the three cases both the sides one after another and then write them in the form 9m,9m+1and9m+8.
  • 1 answers

Sk Jha 7 years, 5 months ago

Yes . It may come but in a different language and data .
  • 0 answers
  • 1 answers

Rohit Jha 7 years, 5 months ago

(2x + y= 3) × 3. ----1 (3x + 4y=5) × 2. ----2 From 1 & 2 we get; 6x + 3y = 9 6x + 8y =10 --------------------- -5y= -1 So, y = 1/5 Then, 2x= 3-1/5 2x =14/5 X= 14/10
  • 0 answers
  • 0 answers
  • 2 answers

Saurabh Vishwakarma 7 years, 5 months ago

Of a triangle=180 Therefore x+y+40=180. 1 But x-y=30 (given) x=y+30 Putting value in eq.1 y+30+y+40=180 2y=110 y=55 .: x=85

Saurabh Vishwakarma 7 years, 5 months ago

We know that sum of all angeles
  • 0 answers
  • 1 answers

Himanshi Sharma 6 years, 11 months ago

the value of n=27

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App