Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Arsh Ruhela 7 years, 5 months ago
- 0 answers
Posted by Devanshi Dhuria 7 years, 5 months ago
- 1 answers
Posted by Vishwanath Gupta 7 years, 5 months ago
- 2 answers
Vaibhav Gautam 7 years, 5 months ago
Posted by Ashish Goswami 7 years, 5 months ago
- 1 answers
Posted by Kanika Bardwaj 7 years, 5 months ago
- 1 answers
Posted by Divya Ajay 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
LHS =(sin A + sec A)2 + (cos A + cosec A)2
{tex}= \left( \sin A + \frac { 1 } { \cos A } \right) ^ { 2 } + \left( \cos A + \frac { 1 } { \sin A } \right) ^ { 2 }{/tex}
{tex}= \sin ^ { 2 } A + \frac { 1 } { \cos ^ { 2 } A } + 2 \frac { \sin A } { \cos A } + \cos ^ { 2 } A{/tex}{tex}+ \frac { 1 } { \sin ^ { 2 } A } + 2 \frac { \cos A } { \sin A }{/tex}
= {tex}sin^2A+cos^2A{/tex} + {tex}\frac { 1 } { \sin ^ { 2 } A } + \frac { 1 } { \cos ^ { 2 } A }{/tex}{tex}+ 2 \left( \frac { \sin A } { \cos A } + \frac { \cos A } { \sin A } \right){/tex}
= 1 + {tex}\frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin ^ { 2 } A \cos ^ { 2 } A } + 2 \left( \frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin A \cos A } \right){/tex}
= 1 + {tex}\frac { 1 } { \sin ^ { 2 } A \cos ^ { 2 } A } + \frac { 2 } { \sin A \cos A }{/tex}
= {tex}\left( 1 + \frac { 1 } { \sin A \cos A } \right) ^ { 2 }{/tex}
= {tex}(1+secAcosecA)^2{/tex}
=RHS
Posted by Aaditya Prabal Chawla 7 years, 5 months ago
- 0 answers
Posted by Vishal Singh 7 years, 5 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Check NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>
Posted by Chinmoy Das 7 years, 5 months ago
- 1 answers
Posted by Kunj Khemka 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let first instalment(a) = Rs a
Let common difference = Rs d
Given,
Amount of 40 instalments = Rs 3600
{tex}\Rightarrow \frac { 40 } { 2 } [ 2 a + ( 40 - 1 ) d ] = 3600{/tex}
{tex}\Rightarrow{/tex}20[2a + 39d] = 3600
{tex}\Rightarrow{/tex}2a + 39d = 180..............(i)
and, Amount of 30 instalments = Rs 2400
{tex}\Rightarrow \frac { 30 } { 2 } [ 2 a + ( 30 - 1 ) d ] = 2400{/tex}
{tex}\Rightarrow{/tex}15[2a + 29d] = 2400
{tex}\Rightarrow{/tex}2a + 29d = 160..............(ii)
Subtracting (ii) from (i),
2a + 39d - 2a - 29d = 180 - 160
{tex}\Rightarrow{/tex} 10d = 20
{tex}\Rightarrow \quad d= \frac { 20 } { 10 } = 2{/tex}
Putting value of d in eq(i),
2a + 39{tex}\times{/tex} 2 = 180
{tex}\Rightarrow{/tex}2a + 78 = 180
{tex}\Rightarrow{/tex}2a = 180 - 78
{tex}\Rightarrow{/tex}2a = 102
{tex}\Rightarrow a = \frac { 102 } { 2 } = 51{/tex}
Therefore, Value of first instalment = Rs 51
Posted by Arun Chauhan Taniya 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
According to the question,
L.H.S. = {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) - \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) } { ( \tan \theta - \sec \theta + 1 ) }{/tex} [{tex}\because{/tex} sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex} = 1]
{tex}= \frac { ( \sec \theta + \tan \theta ) [ 1 - ( \sec \theta - \tan \theta ) ] } { ( \tan \theta - \sec \theta + 1 ) }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) ( \tan \theta - \sec \theta + 1 ) } { ( \tan \theta - \sec \theta + 1 ) } = ( \sec \theta + \tan \theta ){/tex}
{tex}= \left( \frac { 1 } { \cos \theta } + \frac { \sin \theta } { \cos \theta } \right) = \frac { ( 1 + \sin \theta ) } { \cos \theta } = \frac { ( 1 + \sin \theta ) } { \cos \theta } \times \frac { ( 1 - \sin \theta ) } { ( 1 - \sin \theta ) }{/tex}
{tex}= \frac { \left( 1 - \sin ^ { 2 } \theta \right) } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos ^ { 2 } \theta } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex} = R.H.S.
{tex}\therefore{/tex} {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex}
Posted by Amit Kumar Rawat 7 years, 5 months ago
- 1 answers
Posted by Jamin Agarawal 7 years, 5 months ago
- 1 answers
Chinmoy Das 7 years, 5 months ago
Posted by Robin Singh 7 years, 5 months ago
- 1 answers
Rahul Yadav 7 years, 5 months ago
Posted by Viraj Rathod 7 years, 5 months ago
- 1 answers
Rahul Yadav 7 years, 5 months ago
Posted by Ankit Ranjan 7 years, 5 months ago
- 1 answers
Posted by Palak Jain 7 years, 5 months ago
- 0 answers
Posted by Shyam Janam 7 years, 5 months ago
- 2 answers
Posted by Yashvi Patel 7 years, 5 months ago
- 1 answers
Elsa B 7 years, 5 months ago
Posted by Harsh Vishwakarma 7 years, 5 months ago
- 3 answers
Aditya Kumae 7 years, 5 months ago
Posted by Shrutika Magdum 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
The smallest number divisible by 520 and 468 = LCM(520,468)
Prime factors of 520 and 468 are :
520 = 23 {tex}\times{/tex} 5 {tex}\times{/tex} 13
468 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3 {tex}\times{/tex} 3 {tex}\times{/tex} 13
Hence LCM(520,468) = 23 {tex}\times{/tex} 32 {tex}\times{/tex} 5 {tex}\times{/tex} 13 = 8 {tex}\times{/tex} 9{tex}\times{/tex}5{tex}\times{/tex}13 = 4680
Now the smallest number which when increased by 17 is exactly divisible by both 520 and 468.
=LCM(520,468)-17
=4680-17
=4663
Posted by Mohammad Khan 7 years, 5 months ago
- 0 answers
Posted by Astha Singh 7 years, 5 months ago
- 0 answers
Posted by Vanshita Chauhan 7 years, 5 months ago
- 0 answers
Posted by Shalini Singh 7 years, 5 months ago
- 0 answers
Posted by Samipya.M.P. Gowda 7 years, 5 months ago
- 1 answers
Rishabh Chaudhary 7 years, 5 months ago

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide