No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Charvi Dosi 7 years, 5 months ago

3 root 2 and minus 2 root 2
  • 2 answers

Om Zankat 7 years, 5 months ago

a = bq + r

Vaibhav Gautam 7 years, 5 months ago

It is a proven statement given by Euclid a=bq+r 0<or=r<b It is used to find HCF of two or more numbers.
  • 1 answers

Kanika Bardwaj 7 years, 5 months ago

Awful
  • 1 answers

Sia ? 6 years, 6 months ago

LHS =(sin A + sec A)2 + (cos A + cosec A)2
{tex}= \left( \sin A + \frac { 1 } { \cos A } \right) ^ { 2 } + \left( \cos A + \frac { 1 } { \sin A } \right) ^ { 2 }{/tex}
{tex}= \sin ^ { 2 } A + \frac { 1 } { \cos ^ { 2 } A } + 2 \frac { \sin A } { \cos A } + \cos ^ { 2 } A{/tex}{tex}+ \frac { 1 } { \sin ^ { 2 } A } + 2 \frac { \cos A } { \sin A }{/tex}
= {tex}sin^2A+cos^2A{/tex}{tex}\frac { 1 } { \sin ^ { 2 } A } + \frac { 1 } { \cos ^ { 2 } A }{/tex}{tex}+ 2 \left( \frac { \sin A } { \cos A } + \frac { \cos A } { \sin A } \right){/tex}
= 1 + {tex}\frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin ^ { 2 } A \cos ^ { 2 } A } + 2 \left( \frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin A \cos A } \right){/tex}
= 1 + {tex}\frac { 1 } { \sin ^ { 2 } A \cos ^ { 2 } A } + \frac { 2 } { \sin A \cos A }{/tex}
{tex}\left( 1 + \frac { 1 } { \sin A \cos A } \right) ^ { 2 }{/tex}
= {tex}(1+secAcosecA)^2{/tex}     

=RHS   

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 1 answers

Sia ? 6 years, 6 months ago

Let first instalment(a) = Rs a
Let common difference = Rs d
Given,
Amount of 40 instalments = Rs 3600
{tex}\Rightarrow \frac { 40 } { 2 } [ 2 a + ( 40 - 1 ) d ] = 3600{/tex}
{tex}\Rightarrow{/tex}20[2a + 39d] = 3600
{tex}\Rightarrow{/tex}2a + 39d = 180..............(i)
and, Amount of 30 instalments = Rs 2400
{tex}\Rightarrow \frac { 30 } { 2 } [ 2 a + ( 30 - 1 ) d ] = 2400{/tex}
{tex}\Rightarrow{/tex}15[2a + 29d] = 2400
{tex}\Rightarrow{/tex}2a + 29d = 160..............(ii)
Subtracting (ii) from (i),
2a + 39d - 2a - 29d = 180 - 160
{tex}\Rightarrow{/tex} 10d = 20
{tex}\Rightarrow \quad d= \frac { 20 } { 10 } = 2{/tex}
Putting value of d in eq(i),
2a + 39{tex}\times{/tex} 2 = 180
{tex}\Rightarrow{/tex}2a + 78 = 180
{tex}\Rightarrow{/tex}2a = 180 - 78
{tex}\Rightarrow{/tex}2a = 102
{tex}\Rightarrow a = \frac { 102 } { 2 } = 51{/tex}
Therefore, Value of first instalment = Rs 51

  • 1 answers

Sia ? 6 years, 6 months ago

According to the question,

L.H.S. = {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) - \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) } { ( \tan \theta - \sec \theta + 1 ) }{/tex} [{tex}\because{/tex} sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex} = 1]
{tex}= \frac { ( \sec \theta + \tan \theta ) [ 1 - ( \sec \theta - \tan \theta ) ] } { ( \tan \theta - \sec \theta + 1 ) }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) ( \tan \theta - \sec \theta + 1 ) } { ( \tan \theta - \sec \theta + 1 ) } = ( \sec \theta + \tan \theta ){/tex}
{tex}= \left( \frac { 1 } { \cos \theta } + \frac { \sin \theta } { \cos \theta } \right) = \frac { ( 1 + \sin \theta ) } { \cos \theta } = \frac { ( 1 + \sin \theta ) } { \cos \theta } \times \frac { ( 1 - \sin \theta ) } { ( 1 - \sin \theta ) }{/tex}
{tex}= \frac { \left( 1 - \sin ^ { 2 } \theta \right) } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos ^ { 2 } \theta } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex} = R.H.S.
{tex}\therefore{/tex} {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex}

  • 1 answers

Hardik X Animack 7 years, 5 months ago

which theorem
  • 1 answers

Chinmoy Das 7 years, 5 months ago

Let the no. of Rs.50 notes= x Let the no. of Rs.100 note= y A/q x+y=25.........(1) 50x+100y=2000 x+2y=40 (dividing all by 50)...........(2) Now, (1) - (2) By elimination method x+y=25 x+2y=40 .................. -y=-15 => y = 15 Putting y=15 in (1) x+15=25 => x = 25 - 15 => x = 10 Therefore No. of Rs.50 notes =10 No. of Rs.100 notes = 15
  • 1 answers

Rahul Yadav 7 years, 5 months ago

Concentration power rakho And think i can do it And it is too eazy
  • 1 answers

Rahul Yadav 7 years, 5 months ago

4x^2-6x-6x+9 2X(2x+3) -3(2x+3) (2x+3)(2x-3) it is zero when 2x+3=0 & 2x-3=0 X=-3/2 & X=3/2
Ad
  • 0 answers
  • 0 answers
  • 2 answers

Ashray H. 7 years, 5 months ago

cos67-sin23 cos67 - cos(90 - 23) = cos67 - cos67 = 0

Divyansh Dubey Ji 7 years, 5 months ago

Thanks
  • 1 answers

Elsa B 7 years, 5 months ago

146 is a composite number. Factor pairs: 146 = 1 x 146 or 2 x 73. Factors of 146: 1, 2, 73. Prime factorization: 146 = 2 x 73.
  • 3 answers

Aditya Kumae 7 years, 5 months ago

Step 4 : now for the value of x

Aditya Kumae 7 years, 5 months ago

Step3: add (1/2×coefficient of x) to both RHS and LHS

Aditya Kumae 7 years, 5 months ago

Step1: arrange them in their standard form Step2: coefficient of x² should be 1(if any other then divide by its coefficient to all term s of equation
  • 1 answers

Sia ? 6 years, 6 months ago

The smallest number divisible by 520 and 468 = LCM(520,468)
Prime factors of 520 and 468 are :
520 = 23 {tex}\times{/tex} 5 {tex}\times{/tex} 13
468 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3 {tex}\times{/tex} 3 {tex}\times{/tex} 13
Hence LCM(520,468) = 23 {tex}\times{/tex} 32 {tex}\times{/tex} 5 {tex}\times{/tex} 13 = 8 {tex}\times{/tex} 9{tex}\times{/tex}5{tex}\times{/tex}13 = 4680
Now the smallest number which when increased by 17 is exactly divisible by both 520 and 468.
=LCM(520,468)-17
=4680-17
=4663

  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Rishabh Chaudhary 7 years, 5 months ago

8x^2-(28-6)x-21=8x^2-28x+6x-21 =4x(2x-7)+3(2x-7)=(4x+3)(2x-7)Ans

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App