No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Mohit Kumar 7 years, 4 months ago

2m as when m=1 then ans wil 2 which is even similarly when m=2 then ans will 4 which is even and so on.
  • 1 answers

Kaushiki Singh 7 years, 4 months ago

No thanks....??
  • 1 answers

Sia ? 6 years, 6 months ago

Let the uniform speed of the train be x km/h.
Then, the time taken by the train to travel 360/km {tex}= \frac { 360 } { \mathrm { x } }{/tex}
.......{tex}\text { Time } = \frac { \text { distance } } { \text { speed } }{/tex}
If the speed had been 5km/h more,
than the time taken by train to travel 360km {tex}= \frac { 360 } { x + 5 }{/tex}
{tex}\ldots \text { Time } = \frac { \text { distance } } { \text { speed } }{/tex}

According to the question, {tex}\frac { 360 } { x + 5 } = \frac { 360 } { x } - 1{/tex}
{tex}\Rightarrow \frac { 360 } { x } - \frac { 360 } { x + 5 } = 1 \Rightarrow 360 \left( \frac { 1 } { x } - \frac { 1 } { x + 5 } \right) = 1{/tex}
{tex}\Rightarrow \frac { 1 } { x } - \frac { 1 } { x + 5 } = \frac { 1 } { 360 } \Rightarrow \frac { x + 5 - x } { x ( x + 5 ) } = \frac { 1 } { 360 }{/tex}
{tex}\Rightarrow \frac { 5 } { x ( x + 5 ) } = \frac { 1 } { 360 } \Rightarrow x ( x + 5 ) = ( 5 ) ( 360 ){/tex}
{tex}\Rightarrow x ( x + 5 ) = 1800 \Rightarrow x ^ { 2 } + 5 x - 1800 = 0{/tex}
Using quadratic formula, {tex}\mathrm { x } = \frac { - \mathrm { b } \pm \sqrt { b ^ { 2 } - 4 \mathrm { ac } } } { 2 \mathrm { a } }{/tex}
we get {tex}= \frac { - 5 \pm \sqrt { ( 5 ) ^ { 2 } - 4 ( 1 ) ( - 1800 ) } } { 2 ( 1 ) }{/tex}
{tex}= \frac { - 5 \pm \sqrt { 25 + 7200 } } { 2 } = \frac { - 5 \pm \sqrt { 7225 } } { 2 } = \frac { - 5 \pm 85 } { 2 }{/tex}
{tex}= \frac { - 5 + 85 } { 2 } , \frac { - 5 - 85 } { 2 } \Rightarrow x = 40 , - 45{/tex}
Since, x is the speed of the train, it cannot be negative.
So, we ignore the root x = -45.
Therefore, x = 40 gives the speed of the train as 40 km/h.

  • 0 answers
  • 1 answers

Yogita Ingle 7 years, 4 months ago

x2 + x - 30 = x2 + 6x - 5x + 30
= (x +6) (x -5)
x = -6 , x = 5

  • 1 answers

Sia ? 6 years, 6 months ago

The given polynomial f(x) = x4 - 3x3 - x2 + 9x - 6
Since, two of the zeroes of polynomial are {tex}- \sqrt 3{/tex} and {tex}\sqrt 3{/tex}
hence (x+{tex}\sqrt 3{/tex})(x-{tex}\sqrt 3{/tex})=x2-3 is a factor of f(x)

Now on long division of f(x) by x2-3

So, f(x) = x4 - 3x3 - x2 + 9x - 6 = (x2 - 3)(x2 - 3x + 2)
= (x + {tex}\sqrt 3{/tex})(x - {tex}\sqrt 3{/tex})(x2 - 2x - 1x + 2)
= (x + {tex}\sqrt 3{/tex})(x - {tex}\sqrt 3{/tex})(x - 1)(x - 2)

f(x)=0 if x=-{tex}\sqrt 3{/tex} or x={tex}\sqrt 3{/tex} or x=1 or x=2
Therefore, the zeroes of the polynomial are {tex}-\sqrt 3{/tex}, {tex}\sqrt 3{/tex}, 1, 2.

  • 1 answers

Niyati Gupta 7 years, 4 months ago

Q. No.
  • 1 answers

Sia ? 6 years, 6 months ago

Let the original average speed of the train be x km/hr.
Time taken to cover 63 km {tex} = \frac{{63}}{x}{/tex} hours
Time taken to cover 72 km when the speed is increased by 6 km/hr {tex} = \frac{{72}}{{x + 6}}{/tex} hours
By the question,we have,
{tex}\frac{{63}}{x} + \frac{{72}}{{x + 6}} = 3{/tex}
{tex} \Rightarrow \frac{{21}}{x} + \frac{{24}}{{x + 6}} = 1{/tex}
{tex} \Rightarrow \frac{{21x + 126 + 24x}}{{{x^2} + 6x}} = 1{/tex}
{tex} \Rightarrow{/tex} 45x + 126 = x2 + 6x
{tex} \Rightarrow{/tex} x2 - 39x - 126 = 0
{tex} \Rightarrow{/tex} x2 - 42x + 3x - 126 = 0
{tex} \Rightarrow{/tex} x(x - 42) + 3(x - 42) = 0
{tex} \Rightarrow{/tex} (x - 42)(x + 3) = 0
{tex} \Rightarrow{/tex} x - 42 = 0 or x + 3 = 0
{tex} \Rightarrow{/tex} x = 42 or x = -3
Since the speed cannot be negative, {tex}x \ne -3{/tex}.
Thus, the original average speed of the train is 42 km/hr.

  • 1 answers

Sia ? 6 years, 6 months ago


So, the prime factors of 140 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 5 {tex}\times{/tex} 7 = 2{tex}\times{/tex} 5 {tex}\times{/tex} 7.

  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

The given equation is; (x - a)(x - b)+(x - b)(x - c)+(x - c)(x - a) =0 
{tex}\Rightarrow{/tex} (x2 - ax - bx + ab) + (x2- bx - cx + bc) +(x2 - cx - ax + ac) = 0
{tex}\Rightarrow{/tex}3x2 - 2x(a + b + c) + (ab + bc + ca) = 0.....(1). 
Discriminant 'D' of quadratic equation (1) is given by;
{tex}\therefore{/tex} D = 4(a + b + c)- 12(ab + bc + ca)
= 4[(a + b + c)- 3(ab + bc + ca)]
= 4(a2 + b2 + c- ab - bc - ca)
= 2(2a+ 2b2 + 2c2 - 2ab - 2bc - 2ca)
= 2 [(a - b)2 + (b - c)2 + (c - a)2] ≥ 0
[{tex}\because{/tex} (a - b)≥ 0, (b - c)2 {tex}{/tex} ≥ 0 and (c - a){tex}{/tex} ≥ 0].
This shows that both the roots of the given equation are real.
For equal roots, we must have D = 0.
Now, D = 0 {tex}\Rightarrow{/tex} (a - b)+ (b - c)+ (c - a)2= 0
{tex}\Rightarrow{/tex} (a - b) = 0, (b - c) = 0 and (c - a) = 0 (sum of squares can be zero only if they all are equal to 0)
{tex}\Rightarrow{/tex} a = b = c.
Hence, the roots are equal only when a = b = c

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

A convex quadrilateral is a four sided polygon that has interior angles that measure less than 180 degrees each.

  • 1 answers

Sia ? 6 years, 6 months ago

  1. r = 10 cm, {tex}\theta = 90 ^ { \circ }{/tex}
    Area of minor sector = {tex}\frac { \theta } { 360 } \times \pi r ^ { 2 }{/tex}
    {tex}= \frac { 90 } { 360 } \times 3.14 \times 10 \times 10 = 78.5 \mathrm { cm } ^ { 2 }{/tex}
    Area of {tex}\triangle O A B = \frac { O A \times O B } { 2 }{/tex}
    {tex}= \frac { 10 \times 10 } { 2 } = 50 \mathrm { cm } ^ { 2 }{/tex}
    {tex}\therefore {/tex} Area of the minor segment
    = Area of minor sector - Area of {tex}\triangle O A B{/tex}
    {tex}= 78.5 \mathrm { cm } ^ { 2 } - 50 \mathrm { cm } ^ { 2 } = 28.5 \mathrm { cm } ^ { 2 }{/tex}
  2. Area of major sector = {tex}\pi x ^ { 2 } - 78.5{/tex}
    {tex}= 3.14 \times 10 \times 10 - 78.5{/tex}
    {tex}= 314 - 78.5 = 235.5 \mathrm { cm } ^ { 2 }{/tex}
    Alternative method
    Area of major sector = {tex}\frac { 360 - \theta } { 360 } \times \pi r ^ { 2 }{/tex}
    {tex}= \frac { 360 - 90 } { 360 } \times 3.14 \times ( 10 ) ^ { 2 } = 235.5 \mathrm { cm } ^ { 2 }{/tex}
  • 2 answers

Kiran Kumar 7 years, 4 months ago

Trapezium

Asha Maurya 7 years, 4 months ago

Parellelogram
  • 1 answers

Pradhuman Singh 7 years, 4 months ago

Ace to prove euclid division lemma A=bq+r To prove a3 =9m, 9m+1 or 9m+8 ATQ b=3 A=3q+r wher 0<r<3 ,r=0,1,2 I if r=0 A=3q A2=27q A3 =9×3q =9m (wher m= 3q3 )
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Total number of English books = 336 
Total number of mathematics books = 240 
Total number of science books = 96 
∴ Number of books stored in each stack = HCF (336, 240, 96) 
Prime factorization: 

{tex}\begin{array}{l}336=16\times21=2^4\times3\times7\\240=16\times15=2^4\times3\times5\\96=32\times3=2^5\times3\\So\;HCF(336,240,96)=2^4\times3=48\end{array}{/tex}

Hence, we make stacks of 48 books each

Number of stacks ={tex}\frac{336}{48}+\frac{240}{48}+\frac{96}{48}{/tex} = 7+5+2 = 14

  • 1 answers

Ayush Bharti 7 years, 4 months ago

It means that the sides which contains a common vertex and an angle that pair of sides are commonly known as corresponding sides.
  • 1 answers

Mehak Behl 7 years, 4 months ago

Open the Google Chrome and write exercise 5.2 class 10th open the my CBSE guide app or open the dronstudy you get the answers and in the CBSE guide of all the solutions of exercise 5.2 present
  • 1 answers

Varun Kumar 7 years, 4 months ago

Let the cost of pens=x ...cost of pencils be Y 4x +4y = 100 Or x + y =25...........(1) 3x = 15 + Y 3x -Y =15...............(2) Adding both eq ..we get 4X =40 X=10. Putting x =10 in eq 1 we get Y=15
Io
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App