No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Yogita Ingle 5 years, 5 months ago

(x + a) (x + b) = x2 + (a+b)x + ab
(X+4)(x+10) = x2 + (10+4)x + 10(4)
= x2 + 14x + 40

Mihir Kumar 5 years, 5 months ago

x whole square + 14x + 40

Mihir Kumar 5 years, 5 months ago

(x) whole square + (4+10)x + (4×10) =x whole square + 14x + We have to use the identity (x+a)(x+b)= x whole square + (a+b)x + (a×b)
  • 1 answers

Prem Kumar Mandal 5 years, 5 months ago

Let a factor of this to be (x-1) , then x = 1 X^3-6x^2+11x-6=1^3-6×1^2+11×1-6= 1-6+11-6 = 12-12 = 0 , hence its one factor is (x-1) now another factor will be x^3...... ÷ x-1 =x^2 _5x-6=(x-3)(x-2), So x^3..... =( x-3)(x-2)(x-1)
  • 0 answers
  • 1 answers

Sia ? 5 years, 5 months ago

1.25×105 cm3

  • 1 answers

Smita Jaiswal 5 years, 5 months ago

Let x=2.36 ,bar on 6 Then, x=2.36666 Since the repeating block 6 has one digit ,we multiple x by 100 to get 100x = 236.666 Subtract (100x = 236.666)- (x= 2.366) =99x= 234.3 x= (234.3 multiple 10)divide (99 multiple 10) x=781/330
  • 1 answers

Sia ? 5 years, 5 months ago

Given the diameter = 10 m
So, the radius of the well = 5 m
Height of the well = 14 m
Width of the embankment = 5m
Therefore, radius of the embankment = 5 + 5 =10 m
Let h' be the height of the embankment,
Hence, the volume of the embankment = Volume of the well
That is, {tex}\pi{/tex}(R - r)2h' = {tex}\pi r ^ { 2 } h{/tex}
{tex}\Rightarrow{/tex} (102 - 52{tex}\times{/tex} h' = 52 {tex}\times{/tex} 14
{tex}\Rightarrow{/tex} (100 - 25) {tex}\times{/tex} h' = 25 {tex}\times{/tex} 14
{tex}\Rightarrow h' = \frac { 25 \times 14 } { 75 } = \frac { 14 } { 3 }{/tex}
Therefore, h' = 4.67 cm approximately.

  • 1 answers

Sia ? 5 years, 5 months ago

Suppose r be the common radius of a cylinder, cone and a sphere.
height of the cylinder = Height of the cone = Height of the sphere {tex}= 2r{/tex}
Let 'l’ be the slant height of the cone. Then
{tex}l ={/tex} {tex}\sqrt{r^2 + h^2}{/tex}{tex}\sqrt{r^2 + (2r)^2}{/tex} = {tex}\sqrt{5}{/tex}r
{tex}S_1 ={/tex} Curved surface area of cylinder {tex}= 2\pi rh{/tex}
{tex}= 2\pi r . 2r = 4\pi r^2{/tex}
{tex}S_2 ={/tex} Curved surface area of cone = {tex}\pi{/tex}{tex}rl ={/tex} {tex}\pi{/tex}r{tex}\sqrt{5}{/tex}{tex}r = {/tex}{tex}\sqrt{5}{/tex}{tex}\pi{/tex}{tex}r^2 {/tex}
{tex}S_3={/tex} Curved surface area of sphere {tex}= 4\pi r^2{/tex}
{tex}S_1 : S_2 : S_3 = 4\pi r^2 :\sqrt5\pi r^2 : 4\pi r^2{/tex}
{tex}\therefore{/tex}{tex}S_1 : S_2 : S_3 = 4 :\sqrt5  : 4{/tex}

  • 0 answers
  • 2 answers

Sia ? 5 years, 5 months ago

It is given that ,
x + 1/x = 7
We know the algebraic identity,
a³ + b³ + 3ab ( a + b ) = ( a + b )³
or
a³ + b³ = ( a + b )³ - 3ab( a + b )
x³ + 1/x³ = (x + 1/x )³- 3 × x ×1/x(x + 1/x )
= ( x + 1/x )³ - 3( x + 1/x )
= 7³ - 3 × 7
= 7( 7² - 3 )
= 7 ( 49 - 3 )
= 7 × 46
= 322

V Siva 5 years, 5 months ago

The*
  • 3 answers

Shveta S 5 years, 5 months ago

3x+2x=0 5x=0 x=0/5 x=0

Yogita Ingle 5 years, 5 months ago

3x + 2x = 0
5x = 0
x = 0/5
x = 0

Sia ? 5 years, 5 months ago

5x = 0
x = 0
  • 1 answers

Sia ? 5 years, 5 months ago

{tex}\Rightarrow x ^ { 2 } + 3 \sqrt { 2 } x + 4{/tex}
{tex}\Rightarrow x ^ { 2 } + 2 \sqrt { 2 } x + \sqrt { 2 } x + 4{/tex}
{tex}= x ( x + 2 \sqrt { 2 } ) + \sqrt { 2 } ( x + 2 \sqrt { 2 } ){/tex}
{tex}\Rightarrow ( x + 2 \sqrt { 2 } ) \quad ( x + \sqrt { 2 } ){/tex}
{tex}\{ x = - 2 \sqrt { 2 } , - \sqrt { 2 } \}{/tex}

  • 2 answers

Yogita Ingle 5 years, 5 months ago

Sides Of a Triangular Field are 50 cm , 45 cm, 35 cm

Let, First Side = a
Second Side = b
Third Side = c

We know that , Semi-perimeter = a+b+c/2

 ⇒  s =  50+45+35/2

 ⇒ = 50+80/2

 ⇒ = 130/2

 ⇒  = 65

Hence semi-perimeter is 65

Using Heron's Formula

Area = √s(s-a)(s-b)(s-c)

 ⇒ =  √65(65-50)(65-45)(65-35)

 ⇒  = √65(15)(20)(30)

 ⇒ = √ 585000

 ⇒  area =  764.85 cm²

Now, we have to find
Required number of flower beds that can be prepared if each bed measures 5m²


=> 764.85m² /5m²

 

Sia ? 5 years, 5 months ago

To find out the Area of a scalene triangle whose three sides are given, first find out the half perimeter
s = (a+b+c)/2
where a, b, and c are the length of the three sides of a triangle
s = (35 + 45 + 50) / 2
   = 130 / 2 
   = 65 cm
Area of scalene triangle is given by 
A = sqrt (s (s - a) (s - b) (s - c))
    = sqrt (65 * (65 - 35) ( 65 - 45) (65 - 50))
    = sqrt (65 * 30 * 20 * 15)
    = sqrt (585000)
    = 764.853 sq cm
  • 0 answers
  • 1 answers

Sia ? 5 years, 5 months ago

6x2 + 17x + 5
= 6x2 + 2x + 15x + 5
= 2x(3x + 1) + 5(3x + 1)
= (3x + 1)(2x + 5)

  • 1 answers

Sia ? 5 years, 5 months ago

16
  • 2 answers

Shikhar Mishra 5 years, 5 months ago

12√6

Sia ? 5 years, 5 months ago

12{tex}\sqrt 6{/tex}

  • 3 answers

Surya.. Jatt??? 5 years, 5 months ago

Diagonl bisect at 90

Surya.. Jatt??? 5 years, 5 months ago

Diagonals are equal

Tanmaya Chita Padhi 5 years, 5 months ago

Square is a quadrilateral in which all sides are same
  • 4 answers

Tanmaya Chita Padhi 5 years, 5 months ago

1

Alishka 02 5 years, 6 months ago

1

Alishka 02 5 years, 6 months ago

0

Rudrani Kumari 5 years, 6 months ago

1
  • 2 answers

Suraj Sharma 5 years, 5 months ago

How

Maya Choudhary 5 years, 6 months ago

0
  • 1 answers

Prem Kumar Mandal 5 years, 6 months ago

K(12Y^2+8Y-20) 4K(3Y^2+2Y-5) 4K(《Y-1》《3Y+5》)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App