No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Naveen Sharma 8 years, 9 months ago

Ans. Let monthly income of Rahul = x

Monthly income of Any = y

Then

{tex}=> y = {3x\over 2} + 100{/tex}

=> 2y = 3x +100

=> 3x - 2y + 100 = 0

Required Linear Equation.

 

  • 1 answers

Naveen Sharma 8 years, 9 months ago

Ans. Diameter of cloth = 28cm

Radius of cloth =28/2 cm = 14 cm

height of cloth h = 17cm + 2 × 2 cm (i.e., margin) = 21 cm

Cloth required for covering the lampshade = Its curved surface area = 2πrh 

{tex}=> 2\times {22\over 7}\times14\times 21{/tex}= 1848cm2

Let total cloth was x cm2As {tex}{1\over 12}^{th} {/tex}cloth has been wasted,

 {tex}{11\over 12}th {/tex} cloth was used in making

So, {tex}{11x\over 12} = 1848 {/tex}

=> x = 2016 cm2

 

  • 1 answers

Shweta Gulati 8 years, 9 months ago

We know that two triangles on the same base and between the same parallels are equal in area.

 

Consider the following figure.

 

In the above figure, triangle ADX and ACX are on the same base AX and between the parallels AB and DC.

 

Therefore, ar .,..(1)

Similarly, triangle ACX and ACY are on the same base AC and between the parallels XY and AC.

 

Therefore,  ....(2)

From equations (1) and (2), we have

 

  • 1 answers

Naveen Sharma 8 years, 9 months ago

Ans. Let old radius of cylinder = r

old Height of clyinder = h

old CSA of Cylinder = {tex}2\pi r h{/tex}

New radius of cylinder = {tex}r + {75\times r \over 100} = {7r\over 4}{/tex}

New height of cylinder = {tex}h - {h\times 50\over 100} = {h\over 2}{/tex}

New CSA of Cylinder = {tex}2\times \pi\times {7r\over 4}\times {h\over 2} {/tex}

{tex}={ 7\pi rh \over 4}{/tex}

Change (decrease) in CSA ={tex}2\pi rh - { 7\pi rh \over 4} = {\pi rh \over 4}{/tex}

% decrease = {tex}{\pi rh \over 4 \times 2 \pi rh }\times 100 = 12{1\over 2}\%{/tex}

  • 1 answers

Harsh Raj 8 years, 9 months ago

If coin is tossed only 5 times then how the total outcome become 9 .

  • 1 answers

Shweta Gulati 8 years, 9 months ago

A cylinder with radius r and height h has CSA = 2{tex} {\pi}{/tex}rh

In case,  radius is doubled 

New radius = 2r

Height is halved,  new height = h\2

CSA = 2{tex}{\pi}{/tex}(2r)(h\2)

= 2{tex} { \pi}{/tex}rh

So, change in CSA is observed! 

  • 1 answers

Shweta Gulati 8 years, 9 months ago

Longest pole is the diagonal of the room, 

and it can be calculated as

d = {tex}{ \sqrt ( l^2 +\ b^2 + \ h^2) } {/tex}

= (202+202+102)1/2

=9001/2

= 30cm

  • 1 answers

Neeraj Sharma 8 years, 9 months ago

 

{tex}let\,radius\,of\,cylinder\,is\,r{/tex}

{tex}so\,PE = r\,cm{/tex}

{tex}let\,AP = h\,cm{/tex}

{tex}then\,PQ = \left( {10 - h} \right)cm{/tex}

{tex}\sin ce\,\Delta APE \sim \Delta AQC{/tex}

{tex}So,{/tex}

{tex}{{AP} \over {AQ}} = {{PE} \over {QC}}{/tex}

{tex}{h \over {10}} = {r \over 4}{/tex}

{tex}h = {{10r} \over 4}{/tex}

{tex}so,\,PQ = 10 - {{10r} \over 4} = \left( {10 - {{5r} \over 2}} \right)cm{/tex}

{tex}CSA\,of\,cylinder = 2\pi r\left( {10 - {{5r} \over 2}} \right){/tex}

{tex} = \pi r\left( {20 - 5r} \right){/tex}

{tex} = 5\pi r\left( {4 - r} \right)c{m^2}{/tex}

Largest possible curved surface area of cylinder={tex}5\pi r\left( {4 - r} \right)c{m^2}{/tex}

  • 1 answers

Shweta Gulati 8 years, 9 months ago

Let the first coordinate be x ; the second coordinate be y

So, x+y =5

To  draw the graph , find its two solutions

When x = 0 , y=5

When  y =0 , x=5

Plot them on a graph paper and you will see that these points make up a triangle with x- and y-axis.

Area of triangle = {tex}{ 1\over 2}{/tex}{tex}{ b\ X \ h}{/tex}

= (5 X 5 )/2 = 25/2 = 12.5 square units

  • 2 answers

Rashmi Bajpayee 8 years, 9 months ago

Mean = sum of 200 numbers / 200

180 = sum of 200 numbers / 200

Sum of 200 numbers = 180 × 200 = 36000

Now, if each number is increased by 10, then 

Sum of 200 numbers = 36000 + 200 × 10 = 38000

New mean = 38000/200 = 190

New mean is 190

Jd Shukla 8 years, 9 months ago

Answer is 170

  • 2 answers

Neeraj Sharma 8 years, 9 months ago

{tex}h = 24\,cm{/tex}

{tex}CSA = 550\,c{m^2}{/tex}

{tex}\pi rl = 550\,c{m^2}{/tex}

{tex}{{22} \over 7} \times r \times \sqrt {{h^2} + {r^2}} = 550{/tex}

{tex}r \times \sqrt {576 + {r^2}} = 175{/tex}

{tex}squaring\,on\,both\,sides{/tex}

{tex}{r^2}\left( {576 + {r^2}} \right) = 30625{/tex}

{tex}on\,solving{/tex}

{tex}r = \,7cm{/tex}

{tex}volume = {1 \over 3}\pi {r^2}h = {1 \over 3} \times {{22} \over 7} \times {\left( 7 \right)^2} \times 24{/tex}

{tex}volume = 1232\,c{m^3}{/tex}

Neelam Sharma 8 years, 9 months ago

Volume = csa

  • 1 answers

Neeraj Sharma 8 years, 9 months ago

 

{tex}ABCD\,is\,a\,||gm{/tex}

{tex}AB = DC{/tex}

{tex}{1 \over 2}AB = {1 \over 2}DC{/tex}

{tex}Since\,P\,and\,Q\,are\,the\,mid\,po{\mathop{\rm int}} s\,of\,AB\,and\,CD{/tex}

{tex}PB = DQ{/tex}

{tex}also\,PB||DQ{/tex}

{tex}Hence\,DPBQ\,is\,a\,||gm{/tex}

{tex} \Rightarrow DP||BQ \ldots \ldots \left( 1 \right){/tex}

{tex}similarly{/tex}

{tex}APCQ\,is\,a\,||gm{/tex}

{tex} \Rightarrow AQ||BC \ldots \ldots \left( 2 \right){/tex}

{tex}From\,\left( 1 \right)\,and\,\left( 2 \right){/tex}

{tex}DP||BQ\,and\,AQ||BC{/tex}

{tex} \Rightarrow SP||QR\,and\,SQ||PR{/tex}

{tex}Hence\,PSQR\,is\,a\,||gm{/tex}

  • 2 answers

Jd Shukla 8 years, 9 months ago

Answer is:angleBAC=65

angleBOC=230

reflex angle BOC=130

Gurleen Kaur 8 years, 9 months ago

It is not a correct question

  • 2 answers

Rashmi Bajpayee 8 years, 9 months ago

This question is asked by the student of class 9th. Therefore, we cannot use Trigonometry to solve it.

Here is the another solution.

Let the side of equilateral triangle be 'a' cm.

Since in an equilateral triangle, the altitude is perpendicular to the opposite side and bisects it.

Also, in an equilateral triangle ABC,

3 x Area of triangle OBC = Area of triangle ABC

=>          3 x 1/2 x Base x Height = 1/2 x Base x Height

=>          3 x 1/2 x a x OM = 1/2 x a x AM

=>          3OM = AM

=>          3OM = 20 + OM

=>          2OM = 20

=>          OM = 10 cm

Now, in triangle OBC, using Pythagoras Theorem,

BM2 = OB2 - OM2

=>          BM<font size="2">2</font> = 20<font size="2">2</font> - 10<font size="2">2</font>

=>          BM<font size="2">2</font> = 400 - 100 = 300

=>          BM = 10(3)1/2

Therefore, the side of equilateral triangle ABC, BC = 2 x BM = 20(3)1/2

 

Naveen Sharma 8 years, 9 months ago

Ans.

Here we know that

{tex}\angle {/tex}OBM = 30

So In right angle triangle OMB,

cos 30 = {tex}{BM\over 20}{/tex}{tex}=> {\sqrt 3\over 2}={ BM\over 20}{/tex}

BM= {tex}10\sqrt3{/tex}cm

Now we know that perpendicular from the centre divides the chord in two equal part so

BC= 2BM = {tex}20\sqrt 3 cm{/tex}

  • 1 answers

Shweta Gulati 8 years, 9 months ago

Circumference of the base of the cup = circumference of sheet

  • 1 answers

Neeraj Sharma 8 years, 9 months ago

{tex}h = 24\,cm{/tex}

{tex}CSA = 550\,c{m^2}{/tex}

{tex}\pi rl = 550\,c{m^2}{/tex}

{tex}{{22} \over 7} \times r \times \sqrt {{h^2} + {r^2}} = 550{/tex}

{tex}{{22} \over 7} \times r \times \sqrt {576 + {r^2}} = 550{/tex}

{tex}r \times \sqrt {576 + {r^2}} = 175{/tex}

squaring on both sides

{tex}{r^2}\left( {576 + {r^2}} \right) = 30625{/tex}

on solving

{tex}r = 7\,cm{/tex}

{tex}volume = {1 \over 3}\pi {r^2}h = {1 \over 3} \times {{22} \over 7} \times {\left( 7 \right)^2} \times 24{/tex}

{tex}volume = 1232\,c{m^3}{/tex}

  • 2 answers

Rashmi Bajpayee 8 years, 9 months ago

Surface area of sphere = 4πr2 = πd2

New diameter = d - 25% of d = 3d/4

New Surface Area = π(3d/4)2 = 9πd2/16

Decrease in Surface area = πd2 - (9πd2/16) = 7πd2/16

% decrease in SA = (7πd2/16 × πd2) × 100

           = 43.75%

Shivam Sanu 8 years, 9 months ago

43.75%

 

  • 1 answers

Rashmi Bajpayee 8 years, 9 months ago

Mean = Sum of 10 numbers/10

Sum of 10 numbers = 55 × 10 = 550

Second condition

Sum of 9 numbers = 50 × 9 = 450

Excluded number = 550 - 450 = 100

  • 2 answers

Shweta Gulati 8 years, 9 months ago

Given - Mean : Median = 2:3

i.e 3Mean = 2Median    -(1)

As we know the empirical formula of Mean, Median and mode

3 Median = 2Mean +Mode

Using eqn (1)

9 Mean = 4Mean + 2Mode

5 Mean = 2 Mode

5 : 2 = Mode : Mean

Jd Shukla 8 years, 9 months ago

Answer is 5:2

  • 1 answers

Rashmi Bajpayee 8 years, 9 months ago

Volume of cone = (1/3)πr2h

New Radius = r + 10% of r = 11r/10

New height = h + 10% of h = 11h/10

New Volume = (1/3)(11r/10)2(11h/10)

                        = (1/3)πr2h × (1331/1000)

Increased volume = (1/3)πr2h - (1/3)πr2h(1331/1000) = (1/3)πr2h(331/1000)

% of increased volume = (New volume/Old volume)×100 

     = 3.31%

  • 2 answers

Shweta Gulati 8 years, 9 months ago

Class size = Difference between consecutive class marks = 57-52 =5

Lower class limit = 52 - (5/2) = 52-2.5 = 49.5   [ Half of class size is subtracted]

Upper class limit = 52 + (5/2) = 52+2.5 = 54.5 [Half of class size is added]

Jd Shukla 8 years, 9 months ago

class limits of two interwals are-49.5-54.5,54.5-59.5 and so on.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App