No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yogita Ingle 5 years, 1 month ago

In the given polynomial a2+5a−104,

The first term is a2 and its coefficient is 1.

The middle term is 5a and its coefficient is 5.

The last term is a constant term −104.

Multiply the coefficient of the first term by the constant 1×−104=−104.

We now find the factor of −104 whose sum equals the coefficient of the middle term, which is 5 and then factorize the polynomial a2+5a−104 as shown below:

a2+5a−104=a2+13a−8a−104=a(a+13)−8(a+13)=(a−8)(a+13)

Hence, a2+5a−104=(a−8)(a+13).

  • 1 answers

Yogita Ingle 5 years, 1 month ago

total food  = 16 × 45 = 720

food after 15 days = 720 ×2/3 = 480

men after 15 days = 16- 6 = 10

so food will last 480/10 = 48 days

  • 1 answers

Yogita Ingle 5 years, 1 month ago

Let us find LCM of 4, 9 and 10
4 = 2 x 2
9 = 3 x 3
10 = 5 x 2
So, LCM = 2 2 x 3 2 x 5 = 180
Now the LCM gives us a clue that if 180 is multiplied by 5 then it will become a perfect square.
The Required number = 180 x 5 = 900

  • 1 answers

Gaurav Seth 5 years, 1 month ago

A n s w e r :  The product of -4p , 7pq is -28 p2 q

-4 p x 7 p q

Putting together we get,

-4 x 7 x p x p x q

Hence,

-28 p2 q

  • 1 answers

Gaurav Seth 5 years, 1 month ago

Factoring  z2-7z-30 

The first term is,  z2  its coefficient is  1 .
The middle term is,  -7z  its coefficient is  -7 .
The last term, "the constant", is  -30 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -30 = -30 

Step-2 : Find two factors of  -30  whose sum equals the coefficient of the middle term, which is   -7 .

      -30    +    1    =    -29  
      -15    +    2    =    -13  
      -10    +    3    =    -7    That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -10  and  3 
                     z2 - 10z + 3z - 30

Step-4 : Add up the first 2 terms, pulling out like factors :
                    z • (z-10)
              Add up the last 2 terms, pulling out common factors :
                    3 • (z-10)
Step-5 : Add up the four terms of step 4 :
                    (z+3)  •  (z-10)

 

Hence, z2−7z−30=(z−10)(z+3).

  • 1 answers

Gaurav Seth 5 years, 1 month ago

 

y²-5y-24
= y²-8y+3y-24
= y(y-8) + 3(y-8)
= (y-8) (y+3)

Detailed explanation:

Factoring  y2-5y-24 

The first term is,  y2  its coefficient is  1 .
The middle term is,  -5y  its coefficient is  -5 .
The last term, "the constant", is  -24 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -24 = -24 

Step-2 : Find two factors of  -24  whose sum equals the coefficient of the middle term, which is   -5 .

      -24    +    1    =    -23  
      -12    +    2    =    -10  
      -8    +    3    =    -5    That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  3 
                     y2 - 8y + 3y - 24

Step-4 : Add up the first 2 terms, pulling out like factors :
                    y • (y-8)
              Add up the last 2 terms, pulling out common factors :
                    3 • (y-8)
Step-5 : Add up the four terms of step 4 :
                    (y+3)  •  (y-8)

  • 1 answers

Meghna Thapar 4 years, 11 months ago

Calculate compound interest on an investment or savings. Using the compound interest formula, calculate principal plus interest or principal or rate or time. Includes compound interest formulas to find principal, interest rates or final investment value including continuous compounding A = Pe^rt.

Compound Interest Equation

A = P(1 + r/n)nt

Where:

  • A = Accrued Amount (principal + interest)
  • P = Principal Amount
  • I = Interest Amount
  • R = Annual Nominal Interest Rate in percent
  • r = Annual Nominal Interest Rate as a decimal
  • r = R/100
  • t = Time Involved in years, 0.5 years is calculated as 6 months, etc.
  • n = number of compounding periods per unit t; at the END of each period

Compound Interest Formulas and Calculations:

  • Calculate Accrued Amount (Principal + Interest)
    • A = P(1 + r/n)nt
  • Calculate Principal Amount, solve for P
    • P = A / (1 + r/n)nt
  • Calculate rate of interest in decimal, solve for r
    • r = n[(A/P)1/nt - 1]
  • Calculate rate of interest in percent
    • R = r * 100
  • Calculate time, solve for t
    • t = ln(A/P) / n[ln(1 + r/n)], then also
    • t = [ ln(A) - ln(P) ] / n[ln(1 + r/n)]

Formulas where n = 1 (compounded once per period or unit t)

  • Calculate Accrued Amount (Principal + Interest)
    • A = P(1 + r)t
  • Calculate Principal Amount, solve for P
    • P = A / (1 + r)t
  • Calculate rate of interest in decimal, solve for r
    • r = (A/P)1/t - 1
  • Calculate rate of interest in percent
    • R = r * 100
  • Calculate time, solve for t
    • t = ln(A/P) / ln(1 + r), then also
    • t = [ ln(A) - ln(P) ] / ln(1 + r)
  • 2 answers

Prachi Saxena 5 years, 1 month ago

Thank

Yogita Ingle 5 years, 1 month ago

We know that,

Area of rectangle = Length × Width

=> 544 = 32 × Width

=> Width = 544 / 32

=> Width = 17 cm

  • 2 answers

Prachi Saxena 5 years, 1 month ago

Thank you

Yogita Ingle 5 years, 1 month ago

The circumference of the circle=2πr=44cm

⇒2×22/7 ×r=44
⇒r= 2×22/44×7=7cm

Now, Area of the circle=πr

 = 22/7 ×7×7=154cm

Now the wire is converted into square,

Then perimeter of square=44cm

⇒4× side=44

⇒ side= 4

44=11cm

Now, area of square=side×side=11×11=121cm 2

  • 1 answers

Yogita Ingle 5 years, 1 month ago

10 cube=1000

11 cube = 1331

since cube of unit digit 1 cube =1

therefore cube root of 1331 is 11

  • 3 answers

Meenu Meenu 5 years, 1 month ago

Yes

Prachi Saxena 5 years, 1 month ago

A square is a special case of many lower symmetry quadrilaterals: ... A quadrilateral with four equal sides and four right angles. A parallelogram with one right angle and two adjacent equal sides. A rhombus with a right angle.

Gaurav Seth 5 years, 1 month ago

A square is a quadrilateral because it has four sides.

 

It is a regular quadrilateral because all four sides and angles are equal.

 

Explanation:

A quadrilateral is any figure with four sides.

 

Let's take for example a rectangle (because we have to prove it with squares), it has four sides, so it's a quadrilateral.

 

And as well as a square has four sides, kites, parallelograms, rhombuses, etc. are also quadrilaterals

1+8
  • 5 answers

Jyoti Gupta 5 years, 1 month ago

9

Christina Shaju 5 years, 1 month ago

9

Christina Shaju 5 years, 1 month ago

10

Vaibhav Paliwal 5 years, 1 month ago

9

Arif Hussain 5 years, 1 month ago

1+8
  • 2 answers

Prachi Saxena 5 years, 1 month ago

61

Vaibhav Paliwal 5 years, 1 month ago

61
  • 1 answers

Himanshu Kumar 5 years, 1 month ago

2_2
  • 1 answers

Ranjan Kumar 5 years, 1 month ago

p²-11p-42 p²-14p+3p-42 p(p-14)+3(p-14) (p+3)(p-14)
  • 1 answers

Ranjan Kumar 5 years, 1 month ago

x²-6x-135 = x²-15x+9x-135 = x(x-15)+9(x-15) = (x+9)(x-15)
  • 1 answers

Ranjan Kumar 5 years, 1 month ago

y²+7y-144 = y²+16y-9y-144 = y(y+16)-9(y+16) = (y-9)(y+16)
  • 1 answers

Vaibhav Paliwal 5 years, 1 month ago

7.5
  • 2 answers

Akanshi Gupta 5 years, 1 month ago

2(5-2)+9×6 10-2+54 8×54 432

Yogita Ingle 5 years, 1 month ago

2( 5–2 )+9×6

= 2( 3 )+9×6

 = 6 +9 × 6

 = 6 + 54

= 60

  • 3 answers

Lanchenba Samjarambam 5 years, 1 month ago

Thank

Prachi Saxena 5 years, 1 month ago

40 and 55.

Yogita Ingle 5 years, 1 month ago

Let the first number be x
second number be (x+15) ( one exceed other by 15 )
sum of the number is  given by x+(x+15) = 95
x+x+15=95
2x+15 = 95
2x =95-15
2x = 80
x=80/2
x =40
first number x=40, second number x+15 = 40+15= 55
The numbers are 40 and 55. 

  • 1 answers

Yogita Ingle 5 years, 1 month ago

y2+7y−144
=y2+16y−9y−144
=y(y+16)−9(y+16)
=(y+16)(y−9)

  • 1 answers

Yogita Ingle 5 years, 1 month ago

x2−9x+20=0

⇒x2−5x−4x+20=0 
⇒(x−4)(x−5)=0
⇒x=4andx=5

  • 2 answers

Sahil Kumar Pandey 5 years, 1 month ago

Base x height

Prateek Tiwari 5 years, 1 month ago

Base × height
  • 0 answers
  • 3 answers

Zibiah Gonsalves 5 years, 1 month ago

Sorry the answer is (x-13)(x-9)

Yogita Ingle 5 years, 1 month ago

To Factorise : x2−22x+117

By splitting the middle term

= x2−13x−9x+117

= x(x−13)−9(x−13)

=(x−9)(x−13)

So, x2−22x+117=(x−9)(x−13)

Zibiah Gonsalves 5 years, 1 month ago

x^2+22x+117_____________(x)^2+x(13+9)+13×9__________=(x+13)(x+9)
  • 1 answers

Yogita Ingle 5 years, 1 month ago

To Factorise : x2−21x+90

By splitting the middle term

=x2−6x−15x+90

=x(x−6)−15(x−6)

=(x−6)(x−15)

So, x2−21x+90=(x−6)(x−15)

  • 1 answers

Yogita Ingle 5 years, 1 month ago

To Factorise : x2−21x+110

By splitting the middle term

x2−10x−11x+110

x(x−10)−11(x−10)

(x−11)(x−10)

So, x2−21x+110=(x−10)(x−11)

  • 1 answers

Yogita Ingle 5 years, 1 month ago

To Factorise : z2−2z−8

By splitting the middle term

=z2−4z+2z−8

=z(z−4)+2(z−4)

=(z+2)(z−4)

So, z2−2z−8=(z+2)(z−4)

  • 1 answers

Yogita Ingle 5 years, 1 month ago

10 x³ - 15x²

= 5(2)x3 - 5(3)x2

= 5x2 (2x - 3)

  • 1 answers

Yogita Ingle 5 years, 1 month ago

  z²-z-2

= z2 - 2z + 1z- 2

= z(z - 2) + 1 (z - 2)

= (z - 2) ( z + 1)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App