Find the area of the shaded …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Soumya Soumya 2 years, 11 months ago
- 2 answers
Related Questions
Posted by Ojus Dimen 1 year, 4 months ago
- 1 answers
Posted by Monika 8B 5 months, 2 weeks ago
- 0 answers
Posted by Arya Jain 1 year, 4 months ago
- 0 answers
Posted by Jashan Preet 7 months, 3 weeks ago
- 1 answers
Posted by Madhav Sharma 10 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Preeti Dabral 2 years, 11 months ago
Radius of the larger semicircle 14 cm
{tex}\therefore {/tex} Area of the larger semicircle
{tex}= \frac { 1 } { 2 } \pi ( 14 ) ^ { 2 } = \frac { 1 } { 2 } \times \frac { 22 } { 7 } \times 196{/tex}
{tex}= 308 \mathrm { cm } ^ { 2 }{/tex}
Radius of each smaller semicircle = 7 cm
{tex}\therefore {/tex} Area of two smaller semicircles
{tex}= 2 \left[ \frac { 1 } { 2 } \times \pi ( 7 ) ^ { 2 } \right]{/tex}
{tex}= \frac { 22 } { 7 } \times ( 7 ) ^ { 2 } = 154 \mathrm { cm } ^ { 2 }{/tex}
{tex}\therefore {/tex} The area of the shaded region
{tex}= 308 \mathrm { cm } ^ { 2 } + 154 \mathrm { cm } ^ { 2 } = 462 \mathrm { cm } ^ { 2 }{/tex}
0Thank You