No products in the cart.

Obtain all the zeores 2x power …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Obtain all the zeores 2x power 4 - 11xpower 3+ 7x power 2 + 13x -7 if two of its zeroes are 3+ root 2 and 3-root 2
  • 1 answers

Sia ? 6 years, 3 months ago

we are given that the two zeroes of given polynomial are (3 + {tex}\sqrt{2}{/tex}) and (3 - {tex}\sqrt{2}{/tex}).
The given quadratic polynomial is
p(x) = 2x4 - 11x3 + 7x+ 13x - 7
Sum of (3 + {tex}\sqrt{2}{/tex}) and (3 - {tex}\sqrt{2}{/tex}) = (3 + {tex}\sqrt{2}{/tex}) + (3 - {tex}\sqrt{2}{/tex}) = 6
Product of (3 + {tex}\sqrt{2}{/tex}) and (3 - {tex}\sqrt{2}{/tex})  = (3 + {tex}\sqrt{2}{/tex})(3 - {tex}\sqrt{2}{/tex})  = 9 - 2 = 7
Polynomial whose zeros are 3 + {tex}\sqrt{2}{/tex} and 3 - {tex}\sqrt{2}{/tex}  is 
x2 - (sum of zeros)x + (Product of zeros) = x2 - 6x + 7
Now we Divide p(x) by x2 - 6x + 7 as:

Therefore, Quotient = 2x2 + x - 1 and remainder = 0.
Other two zeros of polynomial p(x) are also the zeros of q(x)
i.e.,  q(x) = 2x2 + x - 1 = 2x2 + 2x - x - 1  (by splitting the midddle term)
= 2x(x + 1) - (x + 1) = (x + 1 ) (2x - 1)
In order to find the values of x, put(x) = 0
{tex}\Rightarrow{/tex} (x + 1) (2x - 1) = 0
{tex}\Rightarrow{/tex} Either x + 1 = 0 or 2x - 1 = 0
{tex}\Rightarrow{/tex} Either x = -1 or x = {tex}\frac{1}{2}{/tex}
{tex}\therefore{/tex} The zeros of given polynomial p(x) are
{tex}\frac{1}{2}{/tex}, -1, (3 + {tex}\sqrt{2}{/tex}) and (3 - {tex}\sqrt{2}{/tex})

https://examin8.com Test

Related Questions

3+4{
  • 4 answers
Pythagoras theoram ???
  • 1 answers
2x+5= 10
  • 1 answers
Class 8th ex .5.1
  • 1 answers
Convert the following ratio to percentage 3:4
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App