If alpha and beta are the …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Jeevesh Jeevesh 1 year, 2 months ago
- 1 answers
Posted by Catherine Tympuiñ 1 year, 1 month ago
- 0 answers
Posted by Rupesh Rupesh 1 year, 6 months ago
- 2 answers
Posted by Manasvi Bhutada 1 year, 2 months ago
- 1 answers
Posted by Payal Kumari 1 year, 5 months ago
- 0 answers
Posted by Vanshika Prajapati 1 year, 6 months ago
- 1 answers
Posted by Catherine Tympuiñ 1 year, 1 month ago
- 1 answers
Posted by M.Sameeha _ 1 year, 1 month ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 3 months ago
It is given that {tex}\alpha{/tex} and {tex}\beta{/tex} are the zeros of the quadratic polynomial{tex}f(x)=ax^2+bx+c{/tex}
{tex}\therefore \quad \alpha + \beta = - \frac { b } { a } \text { and } \alpha \beta = \frac { c } { a }{/tex}
Now,
{tex}\alpha ^ { 2 } + \beta ^ { 2 } {/tex}
{tex}=\alpha ^ { 2 } + \beta ^ { 2 }+2\alpha\beta-2\alpha\beta{/tex}
{tex}= ( \alpha + \beta ) ^ { 2 } - 2 \alpha \beta{/tex}
{tex}\therefore \quad \alpha ^ { 2 } + \beta ^ { 2 } = \left( \frac { - b } { a } \right) ^ { 2 } - \frac { 2 c } { a } = \frac { b ^ { 2 } - 2 a c } { a ^ { 2 } }{/tex}
0Thank You