No products in the cart.

angle of elevation of a top …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

angle of elevation of a top of a tower from a point on the ground is 60 degree from a point 40 m above the previous. The angle of elevation is 45 degree find the height of the tower
  • 1 answers

Sia ? 6 years, 5 months ago

In {tex}\triangle {/tex}YCB , we have
{tex}\tan 45 ^ { \circ } = \frac { B C } { Y C }{/tex} 
{tex}1 = \frac { x } { Y C }{/tex}
YC = xm 
{tex}\Rightarrow {/tex} XA = x m
In {tex}\triangle {/tex}XAB, {tex}\tan 60 ^ { \circ } = \frac { A B } { X A }{/tex} 
{tex}\sqrt { 3 } = \frac { x + 40 } { x }{/tex}

{tex}\sqrt { 3 } x = x + 40{/tex}
{tex}x \sqrt { 3 } - x = 40{/tex} 
{tex}x = \frac { 40 } { \sqrt { 3 } - 1 } \times \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } + 1 }{/tex} 
{tex}= 20 ( \sqrt { 3 } + 1 ){/tex} 
{tex}= ( 20 \sqrt { 3 } + 20 ){/tex} 
{tex}\therefore {/tex} height of the tower AB = x + 40
{tex}= 20 \sqrt { 3 } + 20 + 40{/tex} 
{tex}= 20 \sqrt { 3 } + 60{/tex}
{tex}= 20 ( \sqrt { 3 } + 3 ){/tex}
In {tex}\triangle {/tex} XAB, 
{tex}\sin 60 ^ { \circ } = \frac { A B } { B X }{/tex}
{tex}\frac { \sqrt { 3 } } { 2 } = \frac { A B } { B X }{/tex} 
{tex}B X = \frac { 20 ( \sqrt { 3 } + 3 ) 2 } { \sqrt { 3 } }{/tex} 
{tex}= 40 ( \sqrt { 3 } + 1 ){/tex}
{tex}= 40 \times 2 \cdot 73{/tex}
= 109.20 m

https://examin8.com Test

Related Questions

Class 8th ex .5.1
  • 1 answers
Pythagoras theoram ???
  • 1 answers
2x+5= 10
  • 1 answers
3+4{
  • 4 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App