No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 3 years, 4 months ago

a continuous function is a function that does not have any abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its output can be assured by restricting to sufficiently small changes in its input.
  • 1 answers

Gaurav Kumar 3 years, 4 months ago

1/3.542
  • 3 answers

Aditi Ahuja 3 years, 4 months ago

Log10^23 23 log 10 Log10=1 Ans- 23

Nishant Lamba 3 years, 4 months ago

Cbse

Ramnivas Verma 3 years, 4 months ago

23
  • 1 answers

Tanvir Singh 😊😀😊 3 years, 4 months ago

If A and B are symmetric then A=A'and B=B' AB-BA=A'B'-B'A' =(BA)'-(AB)' =(BA-AB)' =-(AB-BA)' Hence AB-BA is skew symmetric....
  • 3 answers

Prachi Agarwal 3 years, 4 months ago

Relation is the subset of Cartesian product ( A*B). Function is the subset of relation which have a unique image of every element in its domain to its co domain . No every relation is not a function as function should have unique image.

Bhumika Agrawal 3 years, 4 months ago

No every relation is not a fun

Aditya Birla 3 years, 4 months ago

Relation is all possible pairs formed by two set while functions are the specific pairs. Relate function as a Machine. In Machine(eg. R.O water filter) you put input(water) and you get output (pure water) but you cannot put stones in machine, machine will not accept it. Similarly function is the machine where you cannot put all values for that specific function and as output you get a value. So Every relation is not function
  • 1 answers

Satyam Satyam 3 years, 4 months ago

I have my own trick which I have discovered by that you can find inverse by elimentry row transformation easily without applying any of your logic
  • 3 answers

Magdalin Felicita 3 years, 4 months ago

(A+B)²=A²+2AB+B²

Bhumika Agrawal 3 years, 4 months ago

(A-B)^2 +4AB

Rishav Raj 3 years, 4 months ago

A^2+b^2+2ab
  • 2 answers

Bhumika Agrawal 3 years, 4 months ago

-sin x

Satyam Satyam 3 years, 4 months ago

-sinx
  • 3 answers

Bhumika Agrawal 3 years, 4 months ago

dy/dx = 1/cosec x * d(cosec x )/dx dy/dx = 1/cosec x * (-cosec x. cot x) dy/dx = -cot x

Bhumika Agrawal 3 years, 4 months ago

Right question is log (cosec x)= y

Bhumika Agrawal 3 years, 4 months ago

This question is wrong
  • 3 answers

Bhumika Agrawal 3 years, 4 months ago

Upper triangular and lower triangular matrix

Bhumika Agrawal 3 years, 4 months ago

Identify matrix bhi hota h

Satyam Satyam 3 years, 4 months ago

There are various types of matrix like Row matrix, Coloumn matrix,Unit matrix,Zero matrix,Square Matrix,Scalar matrix and Diagnal matrix
  • 2 answers

Ashmit Rathi 3 years, 4 months ago

R S aggarwal

Gagandeep Malhyan 3 years, 4 months ago

Question bank
  • 0 answers
  • 1 answers

Siddhant Singh 3 years, 4 months ago

How the solution of this question can be posted in image formate
  • 1 answers

Anurag Chaudhary 3 years, 4 months ago

Ha 1.4 or 6.4 bhi
  • 1 answers

Preeti Dabral 3 years, 4 months ago

TO DETERMINE

CALCULATION

It is given that

Now a relation from A to A is a subset of A × A

Where A × A is the Cartesian product of A and A

We we have to determine a Relation R with the below mentioned property

Now there does not exist any ( a, b) in A × A such that a - b = 10

So the Required Relation is Empty

  • 1 answers

Preeti Dabral 3 years, 4 months ago

Let {tex}{\cos ^{ - 1}}\frac{{12}}{{13}} = \theta{/tex} so that {tex}\cos \theta = \frac{{12}}{{13}}{/tex}
{tex}\therefore \sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \sqrt {1 - \frac{{144}}{{169}}}{/tex}{tex}= \sqrt {\frac{{25}}{{169}}} = \frac{5}{{13}}{/tex}
Again, Let {tex}{\sin ^{ - 1}}\frac{3}{5} = \phi{/tex} so that {tex}\sin \phi = \frac{3}{5}{/tex}
{tex}\therefore \cos \phi = \sqrt {1 - {{\sin }^2}\phi } = \sqrt {1 - \frac{9}{{25}}} = \sqrt {\frac{{16}}{{25}}} = \frac{4}{5}{/tex}
Since {tex}\sin \left( {\theta + \phi } \right) = \sin \theta \cos \phi + \cos \theta \sin \phi {/tex} {tex} = \frac{5}{{13}} \times \frac{4}{5} + \frac{{12}}{{13}} \times \frac{3}{5}{/tex} 
{tex}= \frac{{20 + 36}}{{65}} = \frac{{56}}{{65}}{/tex}
{tex}\Rightarrow \theta + \phi = {\sin ^{ - 1}}\frac{{56}}{{65}}{/tex}
{tex} \Rightarrow {\cos ^{ - 1}}\frac{{12}}{{13}} + {\sin ^{ - 1}}\frac{3}{5} = {\sin ^{ - 1}}\frac{{56}}{{65}}{/tex}

  • 5 answers

Tushar Hooda 3 years, 4 months ago

I hope u will find it helpful

Tushar Hooda 3 years, 4 months ago

Order of matrix p be 2×3

Tushar Hooda 3 years, 4 months ago

Number of family members X=[ 4 2 ​ 6 2 ​ 2 4 ​ ] Daily amount of calories Y= ⎣ ⎢ ⎢ ⎡ ​ 2400 1900 1800 ​ ⎦ ⎥ ⎥ ⎤ ​ Daily amount of proteins Z= ⎣ ⎢ ⎢ ⎡ ​ 45 55 33 ​ ⎦ ⎥ ⎥ ⎤ ​ Total requirement of calories: XY=[ 4 2 ​ 6 2 ​ 2 4 ​ ] ⎣ ⎢ ⎢ ⎡ ​ 2400 1900 1800 ​ ⎦ ⎥ ⎥ ⎤ ​ =[ 24600 15800 ​ ] Total requirement of proteins XZ=[ 4 2 ​ 6 2 ​ 2 4 ​ ] ⎣ ⎢ ⎢ ⎡ ​ 45 55 33 ​ ⎦ ⎥ ⎥ ⎤ ​ =[ 576 332 ​ ]

Tushar Hooda 3 years, 4 months ago

If it is 2 children then answer is :

Tushar Hooda 3 years, 4 months ago

In 2nd line is it 2 men or children
  • 2 answers

Tushar Hooda 3 years, 4 months ago

d(e^sin(cosx) / dx = =e^sin(cosx). Cos(cosx). -sinx =-e^sin(cosx).cos(cosx). Sinx

Tushar Hooda 3 years, 4 months ago

d(e^sin(cosx) / dx = e^sin(cosx). Cos(cosx). -sinx -e^sin(cosx).cos(cosx). Sinx
  • 1 answers

Tushar Hooda 3 years, 4 months ago

tan-¹(sin(π/2) = tan-¹(1) = tan-¹(tanπ/4) = π/4 Thus, π/4 is required principal value as it lies b/w (-π/2 , π/2)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App