No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Kumar Vishal Behera 6 years, 4 months ago

Hey where is S. Priya? Do u know??

Aman Kumar 6 years, 4 months ago

No....it will not added
  • 1 answers

Aakarsh Sharma 6 years, 4 months ago

Put x=sin x sin'(sin x)+cos'(sin x) =x+cos'[cos(π/2 -x)] =x+π/2-x =π/2
  • 1 answers

Pawan Panwar 6 years, 4 months ago

Introduce log both sides and then differentiate it
  • 0 answers
  • 1 answers

Alisha Wadhwa 6 years, 4 months ago

Parallel lines are those lines which do not intersect at any point.. Yes,,a line is parallel to itself.
  • 1 answers

Sia ? 6 years, 4 months ago

Let {tex}I = \int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex}

{tex}= 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex} ...(i)

 {tex}{\because \int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx,} } }{/tex} when f(x) is even function]

{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}\left( {\frac{\pi }{2} - x} \right)dx} {/tex}

{tex}\left[ {\because \int\limits_0^a {f\left( x \right)dx = \int\limits_0^a {f\left( {a - x} \right)dx = } } } \right]{/tex}

{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}xdx} {/tex} …(ii)

Adding eq. (i) and (ii),

{tex}2I = 2\int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)dx} {/tex}

{tex}= 2\int\limits_0^{\frac{\pi }{2}} {1dx} {/tex}

{tex}= 2\left( x \right)_0^{\frac{\pi }{2}}{/tex}

{tex} = 2.\frac{\pi }{2} = \pi {/tex}

{tex}\Rightarrow I = \frac{\pi }{2}{/tex}

  • 0 answers
  • 2 answers

Kajal Kunwar 6 years, 4 months ago

Cos ^2 x

Yash Pant 6 years, 4 months ago

Cos^2x
  • 0 answers
  • 1 answers

Anurag Khare 6 years, 4 months ago

Let Tan^-1 a/b = x then tanx = a/b That means perpendicular = a and base = b then hypotenuse= √(a^2+ b^2 ) Since sinx = p/h Therefore sinx = a /√(a^2+ b^2) therefore x = sin^-1 a /√( a^2+ b^2 ) Since x = tan^-1 a/b and x = sin^-1 a/√(a^2+ b^2) therefore tan^-1 a/b = sin^-1 a/√(a^2+ b^2)
  • 2 answers

Rishita Shishir ?✏ 6 years, 4 months ago

Yes, it is the question related to permutation & combination

Kratos Jskfkg 6 years, 4 months ago

Bro... It's in 12 class? I think it's permutation and combination!
  • 2 answers

Sia ? 6 years, 4 months ago

ln(a) ax

Aradhya Agarwal 6 years, 4 months ago

Y= a^x Logy=xloga 1/ydy/dx= x/a*0 +loga1 Y'= loga*y
  • 1 answers

Aradhya Agarwal 6 years, 4 months ago

Divide it by x+y botg sides then derivatives it
  • 1 answers

Subham Agarwal 6 years, 4 months ago

y=f(x) y = f(x) 1. Add Δx When x increases by Δx, then y increases by Δy : y + Δy = f(x + Δx) 2. Subtract the Two Formulas From: y + Δy = f(x + Δx) Subtract: y = f(x) To Get: y + Δy − y = f(x + Δx) − f(x) Simplify: Δy = f(x + Δx) − f(x) 3. Rate of Change To work out how fast (called the rate of change) we divide by Δx: ΔyΔx = f(x + Δx) − f(x)Δx 4. Reduce Δx close to 0 We can't let Δx become 0 (because that would be dividing by 0), but we can make it head towards zero and call it "dx": Δx right arrow dx You can also think of "dx" as being infinitesimal, or infinitely small. Likewise Δy becomes very small and we call it "dy", to give us: dydx = f(x + dx) − f(x) ÷ dx
  • 0 answers
  • 1 answers

Aanchal Kishor 6 years, 4 months ago

F(x) = 1-cos4x F(0)=1 - cos0 = 1-1=0 F(k) = 1-cos 4k F'(k) =4sin4k F'(k) = 0 4sin4k=0 Sin4k = 0 Sin4k=sin0 On comparing. 4k=0 K = 0
  • 2 answers

Dolly ?️ 6 years, 4 months ago

I tell you both 2+2=4 Because, 2+2=1+1+1+1 There are 4 one's hence its sum is 4

Řøhăň Řąjpůť ✌️✊ 6 years, 4 months ago

First tell me 1+1 =2 why?
  • 2 answers

Řøhăň Řąjpůť ✌️✊ 6 years, 4 months ago

shukriya bhai ?

Arkaprobho Dutta 6 years, 4 months ago

sec^-1(-2)=sec^-1(-sec pie/3) =sec^-1[sec(pie - pie/3)]= Sec^-1[sec(2 pie /3)]=2 pie/3 this is the answer hope it helps you
  • 1 answers

Tripti Rawat 6 years, 4 months ago

The given curve is y=[x(x-2)]{tex}^2{/tex}

Then, y=[x{tex}^2{/tex}-2x]{tex}^2{/tex}
{tex} \frac { d y } { d x } = 0{/tex}
{tex} \Rightarrow \quad \frac { d } { d x } \left( x ^ { 2 } - 2 x \right) ^ { 2 } = 0{/tex}
{tex} \Rightarrow{/tex}2(x2 - 2x)(2x - 2) = 0
{tex} \Rightarrow{/tex} x = 0, 1, 2
When x = 0, then y = [0 -(-2)]2 = 0
When x = 1, then y = [1 - 2(1)]2 = 1
When x = 2, then y = [22 - 2 {tex} \times{/tex} 2]2 = 0
Hence, the tangent is parallel to X-axis at the points (0, 0), ( 1, 1) and (2, 0).

  • 0 answers
  • 0 answers
  • 1 answers

Akash Gautam 6 years, 4 months ago

f^-1(x)=1/2(ln(1-x)/(x-3))
  • 1 answers

Babu Seer Singh 6 years, 4 months ago

Hum is question ko parametric forms se solve krnege...
  • 1 answers

Sia ? 6 years, 4 months ago

Check NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App