Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Anjali Dubey 6 years, 2 months ago
- 2 answers
Sia ? 6 years, 2 months ago
we know that ,
equation of plane passing through {tex}(x_1 ,y_1, z_1){/tex} having Direction ratios a, b,c is a {tex}(x - x_1) + b (y- y_1) + c (z - z_1) = 0{/tex}
Equation of plane passing through the point A (1, 2, 1) is given as
{tex}a (x - 1 ) + b (y- 2) + c (z - 1 ) = 0{/tex} .....(i)
Now, DR's of line PQ where {tex}P(1, 4, 2)\ and\ Q(2, 3, 5)\ are\ ( 2 -1, 3 - 4, 5-2)=(1, -1, 3).{/tex}
Plane (i) is perpendicular to line PQ.
{tex}\therefore{/tex} Direction ratios of plane (i) are (1, -1, 3) [{tex}\because{/tex} Direction ratios normal to the plane are proportional]
i.e. {tex}a = 1, b = -1, c = 3{/tex}
On putting values of a, b and c in Eq. (i), we get the required equation of plane as
{tex}1 (x- 1 ) -1 (y - 2) + 3 (z- 1 ) = 0{/tex}
{tex}x - 1 - y + 2 + 3 z - 3 = 0{/tex}
{tex}x - y + 3z - 2 = 0{/tex} ......(ii)
Now, the given equation of line is
{tex}\frac { x + 3 } { 2 } = \frac { y - 5 } { - 1 } = \frac { z - 7 } { - 1 }{/tex}....(iii)
Direction ratios of this line are {tex}(2, -1, -1){/tex} and passing through the point {tex}(-3, 5, 7){/tex}.
Direction ratios of normal to the plane (ii) are {tex}(1,-1, 3){/tex}.
To check whether the line is perpendicular to the plane , we use the condition {tex}a_1 a_2 + b_1 b_2 + c_1 c_2 = 0{/tex}
{tex}2 (1 ) -1 (-1) -1 (3) = 2 + 1 -3 = 0{/tex}
So, line (iii) is perpendicular to plane (i).
Distance of the point {tex}(-3, 5, 7){/tex} from the plane (ii)
{tex}\Rightarrow d = \left| \frac { ( - 3 ) ( 1 ) + ( 5 ) ( - 1 ) + 7 ( 3 ) - 2 } { \sqrt { ( 1 ) ^ { 2 } + ( - 1 ) ^ { 2 } + ( 3 ) ^ { 2 } } } \right|{/tex}{tex}\left[ \begin{array} { c } { \because \text { distance of the point } \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) } \ { \text { to the plane } a x + b y + c z + d = 0 \text { is } } \\ { d = \frac { \left| a x _ { 1 } + b y _ { 1 } + a _ { 1 } + d \right| } { \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } } } \end{array} \right]{/tex}
{tex}= \left| \frac { - 3 - 5 + 21 - 2 } { \sqrt { 1 + 1 + 9 } } \right|{/tex}
{tex}= \left| \frac { 11 } { \sqrt { 11 } } \right| = \left| \frac { ( \sqrt { 11 } ) ^ { 2 } } { \sqrt { 11 } } \right|{/tex}
{tex}= \sqrt { 11 }units{/tex}
Posted by Manjusha Sharma 6 years, 2 months ago
- 2 answers
Posted by Rajat Barwar 6 years, 2 months ago
- 2 answers
Sia ? 6 years, 2 months ago
You can't use L'Hospital rule as it has not been included in CBSE syllabus or any other board.
Posted by Shruti Kumari 6 years, 2 months ago
- 1 answers
Dileep Kumar 6 years, 2 months ago
dx/(3-2x-x^2)= -dx/(x^2+2x-3)
= -dx/(x^2-x+3x-3)
= -dx/(x-1)(x+3)
= -{dx/4(x-1) - dx/4(x+3) }
= -{log (x-1) - log (x +3 )}/4
= {log (x +3) - log (x -1) }/4
<hr />
Posted by Yatharth Raj 6 years, 2 months ago
- 0 answers
Posted by Rohit Singh 6 years, 2 months ago
- 0 answers
Posted by Shivam Kumar 6 years, 2 months ago
- 3 answers
Aman Kumar 6 years, 2 months ago
Posted by Krishnadev Melevila 6 years, 2 months ago
- 2 answers
Posted by Kunal M 6 years, 2 months ago
- 0 answers
Posted by Kumar Jivesh 6 years, 2 months ago
- 0 answers
Posted by Amitosh Simgh 6 years, 3 months ago
- 0 answers
Posted by Aarushi Aggarwal 6 years, 3 months ago
- 4 answers
Aman Raj Das 6 years, 2 months ago
Siddhinath Jha 6 years, 2 months ago
Dolly ?️ 6 years, 2 months ago
Posted by Siddhinath Jha 6 years, 3 months ago
- 1 answers
Priya Dharshini 6 years, 2 months ago
Posted by Chandan Gupta 6 years, 3 months ago
- 3 answers
Posted by Hrishikesh Majumdar 6 years, 3 months ago
- 3 answers
Posted by Parangat Soni 6 years, 3 months ago
- 2 answers
S.....Sharma☺??? .. 6 years, 2 months ago
Posted by Sahil Gupta 6 years, 3 months ago
- 0 answers
Posted by Gora Sekhon 6 years, 3 months ago
- 0 answers
Posted by Surjit Singh 6 years, 3 months ago
- 0 answers
Posted by Rajeshbv Gupta 6 years, 3 months ago
- 1 answers
Sia ? 6 years, 3 months ago
We have, a relation R on N {tex}\times{/tex} N defined by {tex}(a, b)R(c, d){/tex}, if {tex}ad(b + c) = bc(a + d){/tex}
Reflexive :
Let (a, b) {tex}\in{/tex} N {tex}\times{/tex} N be any arbitrary element.
We have to show {tex}(a, b) R (a, b){/tex}, i.e. to show {tex}ab(b + a) = ba(a + b){/tex} which is trivially true as natural numbers are commutative under usual multiplication and addition.
Since, (a, b) {tex}\in{/tex} N {tex}\times{/tex} N was arbitrary, therefore R is reflexive.
Symmetric:
Let (a, b), (c, d) {tex}\in{/tex} N {tex}\times{/tex} N such that{tex} (a, b) R (c, d){/tex}, i.e. {tex}ad(b + c) = bc(a + d){/tex} ... (i)
To show, (c, d) R (a, b), i.e. to show {tex}cb(d + a) = da(c + b){/tex}
From Eq.(i), we have {tex}ad(b + c) = bc(a + d) da(c + b) = cb(d + a){/tex} [{tex}\because{/tex} natural numbers are commutative under usual addition and multiplication]
{tex}\Rightarrow{/tex} {tex}cb(d + a) = da(c + b){/tex}
{tex}\Rightarrow{/tex} {tex}(c, d) R (a, b){/tex}
Thus, R is symmetric.
Transitive:
Let (a, b), (c, d) and (e, f) {tex}\in{/tex} N {tex}\times{/tex} N such that (a, b) R (c, d) and (c, d R (e, f)
Now, (a, b) R (c, d) {tex}\Rightarrow{/tex}ad(b + c) = bc(a + d)
{tex}\Rightarrow \frac { b + c } { b c } = \frac { a + d } { a d }{/tex}{tex}\Rightarrow \frac { 1 } { b } + \frac { 1 } { c } = \frac { 1 } { a } + \frac { 1 } { d }{/tex}.......(ii)
and (c, d) R (e, f) {tex}\Rightarrow{/tex}cf(d + e) = de(c + f)
{tex}\Rightarrow \quad \frac { d + e } { d e } = \frac { c + f } { c f }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { d } + \frac { 1 } { e } = \frac { 1 } { c } + \frac { 1 } { f }{/tex}......(iii)
{tex}\Rightarrow \quad \frac { 1 } { b } + \frac { 1 } { e } = \frac { 1 } { a } + \frac { 1 } { f }{/tex}{tex}\Rightarrow \frac { e + b } { b e } = \frac { f + a } { a f }{/tex}
{tex}\Rightarrow {/tex}{tex}af(e + b) = be(f + a){/tex}
{tex}\Rightarrow {/tex}{tex}af(b+e)=be(a+f){/tex}
{tex}\Rightarrow{/tex} {tex}(a, b) R (e, f){/tex}
{tex}\Rightarrow{/tex}R is transitive
Thus, R is reflexive, symmetric and transitive, hence R is an equivalence relation.
Posted by Bobby Arora 6 years, 3 months ago
- 2 answers
Posted by Priya Aggarwal 6 years, 3 months ago
- 0 answers
Posted by Sumit Rajbhar 6 years, 3 months ago
- 1 answers
Posted by Sumit Rajbhar 6 years, 3 months ago
- 0 answers
Posted by Khushi Saharan 6 years, 3 months ago
- 0 answers
Posted by Lakshay Saini 6 years, 3 months ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Rajat Barwar 6 years, 2 months ago
1Thank You