No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Sia ? 6 years, 2 months ago

we know that ,
equation of plane passing through {tex}(x_1 ,y_1, z_1){/tex} having Direction ratios a, b,c is a {tex}(x - x_1) + b (y- y_1) + c (z - z_1) = 0{/tex}
Equation of plane passing through the point A (1, 2, 1) is given as 
{tex}a (x - 1 ) + b (y- 2) + c (z - 1 ) = 0{/tex} .....(i)
Now, DR's of line PQ where {tex}P(1, 4, 2)\ and\ Q(2, 3, 5)\ are\ ( 2 -1, 3 - 4, 5-2)=(1, -1, 3).{/tex}
Plane (i) is perpendicular to line PQ.
{tex}\therefore{/tex} Direction ratios of plane (i) are (1, -1, 3) [{tex}\because{/tex} Direction ratios normal to the plane are proportional]
i.e. {tex}a = 1, b = -1, c = 3{/tex}
On putting values of a, b and c in Eq. (i), we get the required equation of plane as
{tex}1 (x- 1 )  -1 (y - 2) + 3 (z- 1 ) = 0{/tex}
{tex}x - 1 - y + 2 + 3 z - 3 = 0{/tex}
{tex}x - y + 3z - 2 = 0{/tex} ......(ii)
Now, the given equation of line is
{tex}\frac { x + 3 } { 2 } = \frac { y - 5 } { - 1 } = \frac { z - 7 } { - 1 }{/tex}....(iii)
Direction ratios of this line are {tex}(2, -1, -1){/tex} and passing through the point {tex}(-3, 5, 7){/tex}.
Direction ratios of normal to the plane (ii) are {tex}(1,-1, 3){/tex}.
To check whether the line is perpendicular to the plane , we use the condition  {tex}a_1 a_2 + b_1 b_2 + c_1 c_2 = 0{/tex}
{tex}2 (1 ) -1 (-1) -1 (3) = 2 + 1 -3 = 0{/tex}
So, line (iii) is perpendicular to plane (i).
Distance of the point {tex}(-3, 5, 7){/tex} from the plane (ii)
{tex}\Rightarrow d = \left| \frac { ( - 3 ) ( 1 ) + ( 5 ) ( - 1 ) + 7 ( 3 ) - 2 } { \sqrt { ( 1 ) ^ { 2 } + ( - 1 ) ^ { 2 } + ( 3 ) ^ { 2 } } } \right|{/tex}{tex}\left[ \begin{array} { c } { \because \text { distance of the point } \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) } \ { \text { to the plane } a x + b y + c z + d = 0 \text { is } } \\ { d = \frac { \left| a x _ { 1 } + b y _ { 1 } + a _ { 1 } + d \right| } { \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } } } \end{array} \right]{/tex}
{tex}= \left| \frac { - 3 - 5 + 21 - 2 } { \sqrt { 1 + 1 + 9 } } \right|{/tex}
{tex}= \left| \frac { 11 } { \sqrt { 11 } } \right| = \left| \frac { ( \sqrt { 11 } ) ^ { 2 } } { \sqrt { 11 } } \right|{/tex}
{tex}= \sqrt { 11 }units{/tex}

Anjali Dubey 6 years, 2 months ago

Tq bhai
  • 2 answers

Ishan Srivastav 6 years, 2 months ago

Sin^-1 (-1) Sin^-1(-Sin(π/2)) Answer: -π/2

Pawan Kumar 6 years, 2 months ago

Hi
  • 2 answers

Sia ? 6 years, 2 months ago

You can't use L'Hospital rule as it has not been included in CBSE syllabus or any other board.

Priyanshu Jha 6 years, 2 months ago

No you can't apply
  • 1 answers

Dileep Kumar 6 years, 2 months ago

dx/(3-2x-x^2)=  -dx/(x^2+2x-3)

                        = -dx/(x^2-x+3x-3)

                        = -dx/(x-1)(x+3)

                       = -{dx/4(x-1) - dx/4(x+3) }

                       = -{log (x-1) - log (x +3 )}/4

                       =  {log (x +3)  -  log (x -1) }/4

<hr />

​​

  • 0 answers
  • 3 answers

Aman Kumar 6 years, 2 months ago

Yaah..that the answer is...

Sajid Ali 6 years, 2 months ago

x ^ x(1+logx).

Aman Kumar 6 years, 2 months ago

Use logarithmic differentiation...i e ,.. log y = x . log x
  • 2 answers

Monu Rana 6 years, 2 months ago

Matrix

Monu Rana 6 years, 2 months ago

C
  • 4 answers

Aman Raj Das 6 years, 2 months ago

Apne room mai aisi jagha saare formula likh kar stick kijiye jaha aapki nazar easily pade.like almirah?

Siddhinath Jha 6 years, 2 months ago

Practice more and more sums realeted to that formula and give 20 to 25 min per day on that formula on sleeping time or when you wake up.

Dolly ?️ 6 years, 2 months ago

Jab bhi question karo formula front per rakho and formula dekh kar question karo,after some time you can observe your change. ?

Aditya Tripathi 6 years, 3 months ago

Write 5 formula daily and learn
  • 1 answers

Priya Dharshini 6 years, 2 months ago

One thing write 5 times daily. Give 20mins daily for formulas. Solve more sums using that formula u will remember it. Trust this idea
  • 3 answers

Sarthak Kathuria 6 years, 2 months ago

-cosx + C

Md.Abdul Tanveer 6 years, 2 months ago

-cosx

Dolly ?️ 6 years, 2 months ago

Sin^-1x
  • 3 answers

Sia ? 6 years, 3 months ago

Yes, Integration is the inverse of differentiation.

Hrishikesh Majumdar 6 years, 2 months ago

Thanks bhai!!

Siddhinath Jha 6 years, 2 months ago

Yes
  • 2 answers

S.....Sharma☺??? .. 6 years, 2 months ago

Yes this is correct information i also listen this news

Nishu Sahu 6 years, 2 months ago

I also want to know ........
  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

We have, a relation R on N {tex}\times{/tex} N defined by {tex}(a, b)R(c, d){/tex}, if {tex}ad(b + c) = bc(a + d){/tex}
Reflexive :

Let (a, b) {tex}\in{/tex} N {tex}\times{/tex} N be any arbitrary element.
We have to show {tex}(a, b) R (a, b){/tex}, i.e. to show {tex}ab(b + a) = ba(a + b){/tex} which is trivially true as natural numbers are commutative under usual multiplication and addition.
Since, (a, b) {tex}\in{/tex} N {tex}\times{/tex} N was arbitrary, therefore R is reflexive.
Symmetric:

Let (a, b), (c, d) {tex}\in{/tex} N {tex}\times{/tex} N such that{tex} (a, b) R (c, d){/tex}, i.e. {tex}ad(b + c) = bc(a + d){/tex} ... (i)
To show, (c, d) R (a, b), i.e. to show {tex}cb(d + a) = da(c + b){/tex}
From Eq.(i), we have {tex}ad(b + c) = bc(a + d)  da(c + b) = cb(d + a){/tex} [{tex}\because{/tex} natural numbers are commutative under usual addition and multiplication]
{tex}\Rightarrow{/tex} {tex}cb(d + a) = da(c + b){/tex}
{tex}\Rightarrow{/tex} {tex}(c, d) R (a, b){/tex}
Thus, R is symmetric.
Transitive:
Let (a, b), (c, d) and (e, f) {tex}\in{/tex} N {tex}\times{/tex} N such that (a, b) R (c, d) and (c, d R (e, f)
Now, (a, b) R (c, d) {tex}\Rightarrow{/tex}ad(b + c) = bc(a + d)
{tex}\Rightarrow \frac { b + c } { b c } = \frac { a + d } { a d }{/tex}{tex}\Rightarrow \frac { 1 } { b } + \frac { 1 } { c } = \frac { 1 } { a } + \frac { 1 } { d }{/tex}.......(ii)
and (c, d) R (e, f) {tex}\Rightarrow{/tex}cf(d + e) = de(c + f)
{tex}\Rightarrow \quad \frac { d + e } { d e } = \frac { c + f } { c f }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { d } + \frac { 1 } { e } = \frac { 1 } { c } + \frac { 1 } { f }{/tex}......(iii)
{tex}\Rightarrow \quad \frac { 1 } { b } + \frac { 1 } { e } = \frac { 1 } { a } + \frac { 1 } { f }{/tex}{tex}\Rightarrow \frac { e + b } { b e } = \frac { f + a } { a f }{/tex}
{tex}\Rightarrow {/tex}{tex}af(e + b) = be(f + a){/tex}
{tex}\Rightarrow {/tex}{tex}af(b+e)=be(a+f){/tex}

{tex}\Rightarrow{/tex}  {tex}(a, b) R (e, f){/tex}
{tex}\Rightarrow{/tex}R is transitive
Thus, R is reflexive, symmetric and transitive, hence R is an equivalence relation.

  • 2 answers

Alok Rajput 6 years, 3 months ago

Bosdko

Vansh Rastogi 6 years, 3 months ago

Ask yourself
  • 1 answers

Alok Rajput 6 years, 3 months ago

Iski ma bosda
  • 0 answers
  • 1 answers

Lakshay Saini 6 years, 3 months ago

Tell me please????

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App