No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Prince Rai 7 years, 10 months ago

f(3)=3*3+2*3+7 =9+6+7 =22
  • 1 answers

Akshita Chaudhary 7 years, 10 months ago

By comparing the given equations to the general equations of the conic sections. I can explain with the help of a specific question. But yours is a general one.
  • 0 answers
  • 2 answers

Anshul Kaushik 7 years, 10 months ago

D - division M - multiple A - addition S - subtract

Akshita Chaudhary 7 years, 10 months ago

Use the BODMAS rule.
  • 1 answers

Jai Sharma 7 years, 10 months ago

(Kplus 1)(k plus 1)k plus 4)
  • 0 answers
  • 0 answers
  • 2 answers

Subhash Kumar 7 years, 10 months ago

= (sinx/cosx)+(cosx/cosx)/(sinx/cosx)-(cosx/cosx = -(tanx+1)/-tanx+1 = -(tanx + Tan45)/(1-tanx*1) =-(tanx+tanx)/(1-tanx. tan45) multiple. &divided by minus =-{ tan(x-4t) }

Ritik Chhatani 7 years, 10 months ago

1
  • 2 answers

Priya Kumari 7 years, 10 months ago

(-1-1-1)(-1-11)(-11-1)(1-1-1)(111)(11-1)(1-11)(-111)

Yashwanth Babu 7 years, 10 months ago

(-1,-1,-1)(1,-1,-1)(1,-1,1) (-1,-1,1)(1,-1,1)(1,1,1)
  • 0 answers
  • 1 answers

Dhruv Bansal 7 years, 10 months ago

r(Cos theta + iSin theta)
  • 2 answers

Amit Kumar 7 years, 10 months ago

Wrong 6th term will 2root2

Shiksha Bartwal 7 years, 10 months ago

r=√2/2 and 6th term is √2
  • 0 answers
  • 2 answers

Dhruv Bansal 7 years, 10 months ago

-Sinx

Priya Kumari 7 years, 10 months ago

-sinx
  • 2 answers

Anshika Patel 7 years, 10 months ago

16+4√12

Chandrashekhar Wankhede 7 years, 10 months ago

Regular hexagon can be decided into 6 equilateral triangles, side or triangle = 4 units, area or each triangle =( sqrt(3)/4)* 4*4 sq units, hence area of regular hexagon will be 6 * area of each triangle
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App