No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Cheeku 18 4 years, 3 months ago

R-nπ/3
  • 3 answers

Garima Kaushik 4 years, 3 months ago

Vedantu all YouTube channel are best for jee

Anirudh Saripella 4 years, 3 months ago

Go for "vedantu maths"

Chetan Sah 4 years, 3 months ago

Go with "Vedantu Maths".
  • 1 answers

Cheeku 18 4 years, 3 months ago

Not defined that is infinity
  • 2 answers

Cheeku 18 4 years, 3 months ago

=2i(1-8i) =2i+16

Sia ? 4 years, 3 months ago

6

  • 1 answers

Deepali Kumari 4 years, 3 months ago

First multiply by 2/2 in LHS ,then use factorization and defactorisation formulas
  • 1 answers

Maahi 1008 4 years, 3 months ago

n²-5n-20n-100=0 n(n-5)-20(n-5)=0 (n-5)(n-20)=0 n=5 and n=20
  • 0 answers
  • 1 answers

Maahi 1008 4 years, 3 months ago

5/16
  • 2 answers

Cheeku 18 4 years, 3 months ago

Its 2 not -2

Cheeku 18 4 years, 3 months ago

-2
  • 0 answers
  • 0 answers
  • 1 answers

A T 4 years, 4 months ago

0.0068
  • 1 answers

Khushi Kim 4 years, 1 month ago

It's uh
  • 1 answers

Khushi Kim 4 years, 4 months ago

Go through the subject teacher u tube channel he fully explained the chapter very carefully , hope it helps to u
  • 1 answers

Preeti Dabral 4 years, 4 months ago

Types of Sets in Maths

The different types of sets are as follows:

Empty Set 

The set is empty! This means that there are no elements in the set. This set is represented by ϕ or {}. An empty set is hence defined as:

Definition: If a set doesn’t have any elements, it is known as an empty set or null set or void set. For e.g. consider the set,

P = {x : x is a leap year between 1904 and 1908}

Between 1904 and 1908, there is no leap year. So, P = ϕ.

Similarly, the set,

Q = {y : y is a whole number which is not a natural number,y ≠ 0}

0 is the only whole number that is not a natural number. If y ≠ 0, then there is no other value possible for y. Hence, Q = ϕ.

Singleton Set

If a set contains only one element, then it is called a singleton set. For e.g.

A = {x : x is an even prime number}

B = {y : y is a whole number which is not a natural number}

Finite Set

In this set, the number of elements is finite. All the empty sets also fall into the category of finite sets.

Definition: If a set contains no element or a definite number of elements, it is called a finite set.

If the set is non-empty, it is called a non-empty finite set. Some examples of finite sets are:
A = {x : x is a month in a year}; Set A will have 12 elements

B={y: y is the zero of a polynomial (x4 − 6x2 + x + 2)}; Set B will have 4 zeroes

Infinite Set

Just contrary to the finite set, it will have infinite elements. If a given set is not finite, then it will be an infinite set.

For e.g.
A = {x : x is a natural number}; There are infinite natural numbers. Hence, A is an infinite set.

B = {y: y is the ordinate of a point on a given line}; There are infinite points on a line. So, B is an infinite set.

Power Set

An understanding of what subsets are is required before going ahead with Power-set.

Definition: The power set of a set A is the set which consists of all the subsets of the set A. It is denoted by P(A).

For a set A which consists of n elements, the total number of subsets that can be formed is 2n. From this, we can say that P(A) will have 2n elements.

Example: If set A = {-9,13,6}, then power set of A will be:

P(A)={ϕ, {-9}, {13}, {6}, {-9,13}, {13,6}, {6,-9}, {-9,13,6}}

Sub Set

If A={-9,13,6}, then,

Subsets of A= ϕ, {-9}, {13}, {6}, {-9,13}, {13,6}, {6,-9}, {-9,13,6}

Definition: If a set A contains elements which are all the elements of set B as well, then A is known as the subset of B.

Universal Set

This is the set which is the base for every other set formed. Depending upon the context, the universal set is decided. It may be a finite or infinite set. All the other sets are the subsets of the Universal set. It is represented by U.

For e.g. The set of real numbers is a universal set of integers, rational numbers, irrational numbers.

In the discussion above, we have learned how to classify sets on the basis of their elements. To learn more about sets and other topics, visit our site BYJU’S and find interesting articles on every topic.

  • 1 answers

Deepika A 4 years, 4 months ago

Domain of R = {2,3,4}
  • 1 answers

Cheeku 18 4 years, 3 months ago

Domain=[-3,3] Range=[0,3]
4+2
  • 2 answers

Vansh Kohli 4 years, 4 months ago

6 is the answer!

Sanket Kumar 4 years, 4 months ago

6 bro
  • 1 answers

Pushpit Sharma 4 years, 4 months ago

A intersection c will be x : x is a set of odd natural no.
  • 3 answers

Sia ? 4 years, 4 months ago

<a href="https://mycbseguide.com/dashboard/category/1372/type/6">https://mycbseguide.com/dashboard/category/1372/type/6</a>

Vp Tech 4 years, 2 months ago

https://mycbseguide.com/accounts/login/?next=/dashboard/category/1372/type/6

Vansh Kohli 4 years, 4 months ago

Try out NCERT EXAMPLER
  • 3 answers

Sia ? 4 years, 4 months ago

cosec(- 690°) = 1/sin(- 690°) = 1/sin[720°+(- 690°)] = 1/sin30° = 2

Sukhjinder Singh 4 years, 4 months ago

2

Vanisha Saxena 4 years, 4 months ago

cosec(- 690°) = 1/sin(- 690°) = 1/sin[720°+(- 690°)] = 1/sin30° = 2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App