No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 1 answers

Priyanshu Bharadwaj 6 years, 4 months ago

Go through the book of RD Sharma
  • 1 answers

Iram Hasan Hasan 6 years, 4 months ago

x<2,x>1
  • 1 answers

Aryan Thakur 6 years, 4 months ago

Cos2(2x) cos 2x
  • 1 answers

Ayush Vishwakarma?? 6 years, 4 months ago

168/1800 radian
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

From 3x = 2x + x
Applying tan on both sides..
tan3x = tan (2x+x)
tan3x = (tan2x+tanx)/1-tan2x tanx
(1-tan2x tanx)tan3x = tan2x+tanx
tan3x - tanx tan2x tan3x = tan2x+tanx
tanx tan2x tan3x = tan3x-tan2x-tanx

Hence it is proved.

  • 0 answers
  • 7 answers

Kumar Saksham 6 years, 4 months ago

i +1/i = i + i^4/i = i+ i^3 = i -i =0

Ayush Vishwakarma?? 6 years, 4 months ago

Sahi hai na...

Urgain Lhaksam 6 years, 4 months ago

Thanks broooo

Ayush Vishwakarma?? 6 years, 4 months ago

Ni toh 2i/-1 hoga..

Ayush Vishwakarma?? 6 years, 4 months ago

Are yaar jzb hai tum L.c.m lo

Urgain Lhaksam 6 years, 4 months ago

How it become 0

Ayush Vishwakarma?? 6 years, 4 months ago

Zero hoga...
  • 1 answers

Ayush Vishwakarma?? 6 years, 4 months ago

Those no. Which start from positive natural no..
  • 0 answers
  • 1 answers

Shan? .Va 6 years, 4 months ago

All the formulas in the summary r important. Well mostly v use Tan(x+y) Tan(x-y) Cot(x-y),(x+y) Cos(x+y), (x-y) same with sin And the last 5 formulas r important for the ladt exercise U take a look of cosx+ cosy types also
  • 1 answers

Kunal J 6 years, 4 months ago

2P + Psin2alpha
  • 3 answers

Kumar Saksham 6 years, 4 months ago

and belongs to no change category

Kumar Saksham 6 years, 4 months ago

since 180 is an even multiple of 90

Vasu Aggarwal 6 years, 4 months ago

Because the angle is not changing at y axis for example cos(90+0)=sin0
  • 1 answers

Kunal J 6 years, 4 months ago

x = 0 or π/2, For general 2nπ + π/2 or 0
  • 1 answers

Sia ? 6 years, 4 months ago

1. Let {tex}x + yi = \sqrt {1 - i} {/tex}
Squaring both sides, we get
x2 - y2 + 2xyi = 1 - i
Equating the real and imaginary parts
x2 - y2 = 1 and 2xy=-1... . (i)
{tex}\therefore \;xy = \frac{{ - 1}}{2}{/tex}
Using the identity
(x2 + y2)2 = (x2 - y2)2 + 4x2y2
{tex} = {\left( 1 \right)^2} + 44{\left( { - \frac{1}{2}} \right)^2}{/tex}
= 1 + 1
= 2
{tex}\therefore \;{x^2} + {y^2} = \sqrt 2 {/tex} . . . . (ii) [Neglecting (-) sign as x2 + y2 > 0]
Solving (i) and (ii) we get
{tex}{x^2} = \frac{{\sqrt 2 + 1}}{2}{/tex} and {tex}y = \frac{{\sqrt 2 - 1}}{2}{/tex}
{tex}\therefore x = \pm \sqrt {\frac{{\sqrt 2 + 1}}{2}} {/tex} and {tex}y = \pm \sqrt {\frac{{\sqrt 2 - 1}}{2}} {/tex}
Since the sign of xy is negative.
{tex}\therefore {/tex} if {tex}x = \sqrt {\frac{{\sqrt 2 + 1}}{2}} {/tex} then {tex}y = - \sqrt {\frac{{\sqrt 2 - 1}}{2}} {/tex}
and if {tex}x = - \sqrt {\frac{{\sqrt 2 + 1}}{2}} {/tex} then {tex}y = \sqrt {\frac{{\sqrt 2 - 1}}{2}} {/tex}
{tex}\therefore \sqrt {1 - i} = \pm \left( {\sqrt {\frac{{\sqrt 2 + 1}}{2}} - \sqrt {\frac{{\sqrt 2 - 1}}{2}} i} \right){/tex}

 

  • 2 answers

Kumar Saksham 6 years, 4 months ago

since D<0

Kumar Saksham 6 years, 4 months ago

it has no real roots!

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App