No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 2 answers

Sia ? 6 years, 3 months ago

Two zeros are {tex}2\pm\sqrt3{/tex}
Sum of Zeroes {tex}2 + \sqrt { 3 } + 2 - \sqrt { 3 } = 4{/tex}
and product of zeroes = {tex}( 2 + \sqrt { 3 } ) ( 2 - \sqrt { 3 } ) = 4 - 3 = 1{/tex}
Hence quadratic polynomial formed out of this will be a factor of given polynomial,
So, x2 - (sum of zeroes)x + product of zeroes
= x2 - 4x + 1 will be a factor of given polynomial,
Divide given polynomial with x2 - 4x + 1 to get other zeroes.

Now,
x2 -2x - 35
= x2 - 7x + 5x - 35
= x(x - 7) + 5(x - 7)
= (x - 5) (x - 7)
{tex}\therefore {/tex} Zeros are
x = 7 and x = -5
{tex}\therefore {/tex} Other two zeros are 7 and -5 

Shantanu Kapse 6 years, 3 months ago

Let the remaining two zeros be X and Y, As, Sum of roots =6 , product of roots = -35 We get 2 equations, 2+√3 + 2-√3 + x +y = 6 x+y= 2-----(1) (2+√3)(2-√3)(xy) = -35 xy=-35 x=-35/y -----(2) Subs (2) in (1) y-35/y =2 y²-2y-35=0 y=[2±√(144)]/2 y=7 y=-5 x=-5 x=7 Hence the roots are (2±√3),(-5),(7) .
  • 1 answers

Sia ? 6 years, 3 months ago

The value of cos 105o + sin 105o is {tex}\frac{1}{\sqrt{2}}{/tex}
Cos trigonometric values are positive in “first and fourth” quadrants in coordinate axes.
Sin trigonometric values are positive in “first and second” quadrants in coordinate axes.
cos 105o + sin 105o = cos (90o + 15o) + sin (90o + 15o)
= - sin (15o) + cos (15o) (ascos (90o + {tex}\theta{/tex}) = - sin {tex}\theta{/tex} and sin (90o{tex}\theta{/tex}) = cos {tex}\theta{/tex})
= cos 15o - sin 15o
{tex}\left.=\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos 15^{\circ}-\frac{1}{\sqrt{2}} \sin 15^{\circ}\right] \quad \text { (Multiply and divide by } \sqrt{2}\right){/tex}
{tex}=\sqrt{2}\left[\sin 45^{\circ} \cos 15^{\circ}-\cos 45^{\circ} \sin 15^{\circ}\right] \quad\left(A s \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right){/tex}
{tex}=\sqrt{2}\left[\sin \left(45^{\circ}-15^{\circ}\right)\right] \quad(A \sin (A-B)=\sin A \cos B-\cos A \sin B){/tex}
{tex}=\sqrt{2}\left[\sin 30^{\circ}\right]{/tex}
{tex}=\sqrt{2} \times \frac{1}{2}=\frac{1}{\sqrt{2}}{/tex}

  • 1 answers

Hack Gamerz 6 years, 3 months ago

1.1^10000
  • 1 answers

Adarsh Kesharwani 6 years, 3 months ago

cos 1714 cos (90*20-86) -cos86
  • 1 answers

Khushi Hamber 6 years, 3 months ago

There is a mistake in this question. Write question is cos4x+cos3x+cos2x/sin4x+sin2x+sin3x=cot3x
  • 0 answers
  • 1 answers

Khushi Hamber 6 years, 3 months ago

X=(1,2,3,4)
  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

You can check NCERT Solutions here : https://mycbseguide.com/ncert-solutions.html

  • 0 answers
  • 0 answers
  • 1 answers

Neli Majumder 6 years, 3 months ago

Question no 19
  • 0 answers
  • 4 answers

Drishti Arora 6 years, 3 months ago

Bt how did it come?

Yuvika Gupta 6 years, 3 months ago

2 to the power mn minus 1

Drishti Arora 6 years, 3 months ago

Bt the answer is 2 ki power mn and -1..

Aashutosh Sharma 6 years, 3 months ago

M×n

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App