No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 2 answers

Pranali Magdum 6 years, 2 months ago

2

Iram Hasan Hasan 6 years, 2 months ago

2 cos2x
  • 0 answers
  • 0 answers
  • 1 answers

Dev Rathore 6 years, 2 months ago

This is inappropriate ?
An
  • 0 answers
  • 4 answers

Garima Sharma 6 years ago

Thanks to all for help??

Nishant Shishodia 6 years, 2 months ago

-infinity to -1

Iram Hasan Hasan 6 years, 2 months ago

-1 to 4

Rohan Kumar 6 years, 2 months ago

(-infinity to -1)
  • 0 answers
  • 0 answers
  • 1 answers

Pujitha A 6 years, 2 months ago

Iota is indicated by i i=✓-1 i²=-1 In a complex number: Z=X+iy,x,y€R X is called the real part and y ia is the imaginary part. i is the solution of the equation
  • 3 answers

Iram Hasan Hasan 6 years, 2 months ago

12c2

Preet Randhawa 6 years, 2 months ago

12c2 2 represent the hands 12represent the members

Hari Haran 6 years, 2 months ago

12c2 12 represents the members and 2 represents the hands
  • 0 answers
  • 3 answers

Iram Hasan Hasan 6 years, 2 months ago

Use the formula cosC+cosD:2cos(C+D/2)cos(C-D/2) Use this in the question: 2cos(10+110/2)cos(10-110/2)+cos130=0 2cos60°cos(-50°)+cos130°=0 2×1/2.cos50+cos130=0 cos50+cos130=0 2cos(50+130/2)cos(50-130/2)=0 2cos90.cos40=0 2×0.cos40=0 0=0 H.P

Aparna Sinha 6 years, 2 months ago

Thku

Sia ? 6 years, 2 months ago

<div class="ans_text">

cos 10 + cos 110 + cos 130 = (cos 10 + cos 110) + cos 130
{tex}2cos \frac{(110+10)}{2}\times cos\frac{(110-10)}{2}{/tex} + cos 130 {using cos C + cos D}
= {tex}2cos \frac {(C+D)}{2}{/tex}{tex}\times{/tex} {tex}cos\frac {(C-D)}{2}{/tex}
={tex}2cos\frac{120}{2}{/tex} {tex}\times{/tex} {tex}cos\frac {100}{2}{/tex}+ cos (180 - 50) (As 130 = 180 - 50)
= 2 cos 60 {tex}\times{/tex} cos 50 - cos 50 (Using cos (180 - A) = - cos A)
= 2 {tex}\times{/tex}{tex}\frac{1}{2}{/tex}{tex}\times{/tex} cos 50 - cos 50 ( As cos 60 = {tex}\frac{1}{2}{/tex})
= cos 50o - cos 50o = 0

</div>
  • 4 answers

5O75O8 Kulwant Singh Kingra 6 years, 2 months ago

-1

Iram Hasan Hasan 6 years, 2 months ago

-1

Preet Randhawa 6 years, 2 months ago

-1

Mohd Firoz 6 years, 2 months ago

R= { (x,y): x,y € W x square + y square = 25
  • 1 answers

Rahul Fernandes 6 years, 2 months ago

Gfyb
X+5
  • 0 answers
  • 1 answers

Sia ? 6 years, 2 months ago

LHS = {tex}\frac { 1 + \sin \theta - \cos \theta } { 1 + \sin \theta + \cos \theta }{/tex}
{tex}\frac { ( 1 - \cos \theta ) + \sin \theta } { ( 1 + \cos \theta ) + \sin \theta }{/tex} = {tex}\frac { 2 \sin ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } { 2 \cos ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } }{/tex}
[{tex}\because{/tex} sin2x = {tex}\frac { 1 - \cos 2 x } { 2 } \Rightarrow{/tex} {tex}2 sin^2x = 1 - cos 2x{/tex} and  {tex}2sin^2 \frac{x}{2} = 1 - cosx{/tex} and  {tex}2 cos^2{/tex} {tex}\frac { x } { 2 }{/tex} {tex}= 1 + cosx{/tex} and {tex}sinx = 2sin{/tex} {tex}\frac { x } { 2 }{/tex} {tex}\times{/tex} {tex}cos{/tex} {tex}\frac { x } { 2 }{/tex}]
{tex}\frac { \sin ^ { 2 } \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } { \cos ^ { 2 } \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } = \frac { \sin \frac { \theta } { 2 } \left[ \sin \frac { \theta } { 2 } + \cos \frac { \theta } { 2 } \right] } { \cos \frac { \theta } { 2 } \left[ \cos \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \right] }{/tex}
{tex}\frac { \sin \frac { \theta } { 2 } } { \cos \frac { \theta } { 2 } }{/tex} = tan {tex}\frac { \theta } { 2 }{/tex} = RHS
{tex}\therefore{/tex} LHS = RHS
Hence proved.

  • 0 answers
  • 1 answers

Sachin Tiwari 6 years, 2 months ago

Tan70=tan(50+20) Tan(50+20)=tan50+tan20/1-tan50.tan20 Tan70=tan50+tan20/1-tan50.tan20 Tan70 - tan70.tan50.tan20=Tan50+tan20(by cross multiple) We know tan70.tan20=1 So tan70-tan50=tan50+tan20 tan70=2tan50+tan20
  • 0 answers
  • 1 answers

Gaurav Seth 6 years, 2 months ago

Sum of m terms of an A.P. = m/2 [2a + (m -1)d]
Sum of n terms of an A.P. = n/2 [2a + (n -1)d]

m/2 [2a + (m -1)d] / n/2 [2a + (n -1)d] = m:n

⇒ [2a + md - d] / [2a + nd - d] = m/n
⇒ 2an + mnd - nd = 2am + mnd - md
⇒ 2an - 2am = nd - md
⇒ 2a (n -m) = d(n - m)
⇒ 2a = d

Ratio of m th term to nth term:
[a + (m - 1)d] / [a + (n - 1)d]
= [a + (m - 1)2a] / [a + (n - 1)2a]
= a [1 + 2m - 2] / a[1 + 2n -2]
= (2m - 1) / (2n -1)

So, the ratio of mth term and the nth term of the arithmetic series is (2m - 1):(2n -1).

  • 0 answers
  • 2 answers

Abhiraj Singh 6 years, 2 months ago

Domain is the input value of x in the equation Whereas range is the output value of y.

Robinpreet Kaur 6 years, 2 months ago

What
  • 0 answers
  • 1 answers

Aditya Narayan Singh 6 years, 2 months ago

Wait,,if you think then you realise that how it is important

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App