No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let time taken for uphill journey = x hrs
time taken for downhill journey = y hrs
As per given condition
Total time is 15 hours
So,  x + y = 15 ..(i)
and a car goes uphill at the rate of 30 km an hour and downhill at the rate of 50 km an hour. It has covered 650 km.
So, 30x + 50y = 650 ..(ii)
Multiplying eq. (i) by 30 and substracting from eq. (ii), we get
20y = 650 - 450
20y = 200
y = 10
Putting y = 10 in eq. (i), we get
x + 10 = 15
x = 5
Downhill journey = 10 hours and uphill journey = 5 hours.

  • 0 answers
  • 2 answers

Ritika Ritika 7 years, 3 months ago

Yes

Santosh Seth 7 years, 3 months ago

Please consult their teacher.
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

In {tex} \Delta{/tex}ABC, we have
 
{tex} \angle{/tex}B = {tex} \angle{/tex}C                                        
{tex} \Rightarrow{/tex} AC = AB [Sides opposite to equal angles are equal]
{tex} \Rightarrow{/tex} AE + EC = AD + DB
{tex} \Rightarrow{/tex} AE + CE = AD + BD
{tex}\Rightarrow{/tex} AE + CE = AD + CE [{tex}\because{/tex} BD = CE]
{tex}\Rightarrow{/tex} AE = AD
Thus, we have
AD = AE and BD = CE
{tex}\therefore \quad \frac { A D } { B D } = \frac { A E } { C E }{/tex}
{tex}\Rightarrow \quad \frac { A D } { D B } = \frac { A E } { E C }{/tex}

Therefore,by the converse of basic proportionality theorem, we have,
{tex} \quad D E \| B C{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

 LCM  of ( 4,7,13) = 364
Largest 4 digit number = 9999
On dividing 9999 by 364 we get remainder as 171
Greatest number of 4 digits divisible by 4, 7 and 13 = (9999 – 171) = 9828
Hence, required number = (9828 + 3) = 9831
Therefore 9831 is the number.

  • 1 answers

Shulabh Rawat 7 years, 3 months ago

Sum of zeroes= a-b+a+a+b -b /a=3a 6/2=3a a=1 then their zeroes product a age Apne aap or lena
  • 1 answers

Sia ? 6 years, 4 months ago

Let the number of students be x.
Then, cost of food for each student = Rs.{tex}\frac { 2000 } { x }{/tex}
If the number of students decreased by 5, then
new cost of food for each student = Rs.{tex}\frac { 2000 } { x - 5 }{/tex}
Now, according to question,we have
{tex}\frac { 2000 } { x - 5 } - \frac { 2000 } { x } = 20{/tex}
{tex}\Rightarrow \frac { 2000 x - 2000 x + 10000 } { x ^ { 2 } - 5 x } = 20{/tex}

{tex}\Rightarrow \frac{{10000}}{x^2 -5x} = 20{/tex}
{tex}\Rightarrow{/tex} 10000 = 20x2 - 100x
{tex}\Rightarrow{/tex} 20x2 - 100x - 10000 = 0
{tex}\Rightarrow{/tex} x- 5x - 500 = 0
{tex}\Rightarrow{/tex} x2 - 25x + 20x - 500 =0
{tex}\Rightarrow{/tex} x(x - 25) + x(x - 25) = 0
{tex}\Rightarrow{/tex} x - 25 = 0 or x + 20 = 0
{tex}\Rightarrow{/tex} x = 25 or x = -20

Neglecting the value of x = -20 as, number of students cannot be negative. {tex}{/tex}
{tex}\Rightarrow{/tex} x = 25
{tex}{/tex}So,the cost of food for each student is      

     {tex} \frac { 2000 } { x - 5 } = \frac { 2000 } { 25-5 } =\frac{{2000}}{20}{/tex} = 100
Hence, the number of students who attended the picnic is 25 and the cost of food for each student is Rs. 100.

  • 1 answers

Sia ? 6 years, 4 months ago

To prove whether {tex}\sqrt{3}{/tex}  is rational or irrational, we find the square root of {tex}\sqrt{3}{/tex} by long division method.

{tex}\therefore{/tex} {tex}\sqrt{3}{/tex} = 1.732050807
We observe that the decimal representation of{tex}\sqrt{3}{/tex} is neither terminating nor repeating. Hence, {tex}\sqrt{3}{/tex} is an irrational number.

  • 1 answers

Yogita Ingle 7 years, 3 months ago

Principal focus of a concave mirror is a point where light rays parallel to principle axis converge.
The distance between pole of mirror to point of principle focus is focal length of mirror.
Focal length of spherical mirror is half of its radius of curvature.

  • 1 answers

Sia ? 6 years, 4 months ago

 LCM  of ( 4,7,13) = 364
Largest 4 digit number = 9999
On dividing 9999 by 364 we get remainder as 171
Greatest number of 4 digits divisible by 4, 7 and 13 = (9999 – 171) = 9828
Hence, required number = (9828 + 3) = 9831
Therefore 9831 is the number.

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let the given polynomials are f(x) = {tex}{x^3} - 3\sqrt 5 {x^2} + 13x - 3\sqrt 5{/tex}  and g(x) = {tex}(x - \sqrt 5 ){/tex}
∵ g(x) is a factor of f(x) so f(x) = q(x) {tex}(x - \sqrt 5 ){/tex}
Factor theorem, Euclid’s division algorithm.

But, f(x) = q(x) g(x)
{tex}\therefore f(x) = ({x^2} - 2\sqrt 5 x + 3)(x - \sqrt 5 ){/tex}
{tex}\Rightarrow f(x) = [{x^2} - \{ (\sqrt 5 + \sqrt 2 ) + (\sqrt 5 - \sqrt 2 )\} x{/tex}{tex} + (\sqrt 5 - \sqrt 2 )(\sqrt 5 + \sqrt 2 )][(x) - \sqrt 5 ]{/tex}
{tex}= \left[ {{x^2} - (\sqrt 5 + \sqrt 2 )x - (\sqrt 5 - \sqrt 2 )x} \right.{/tex}{tex}\left. { + (\sqrt 5 - \sqrt 2 )(\sqrt 5 + \sqrt 2 )][(x - \sqrt 5 )} \right]{/tex}
{tex}= x[ {x - (\sqrt 5 + \sqrt 2 )] - (\sqrt 5 - \sqrt 2 )}{/tex}{tex}{[x - (5 + \sqrt 2 )} ][x - \sqrt 5 ]{/tex}
For zeroes of f(x), f(x) = 0
{tex}\Rightarrow (x - \sqrt 5 - \sqrt 2 )(x - \sqrt 5 + \sqrt 2 )(x - \sqrt 5 ) = 0{/tex}
{tex}\Rightarrow (x - \sqrt 5 - \sqrt 2 ) = 0{/tex} or {tex}(x - \sqrt 5 + \sqrt 2 ) = 0{/tex} or {tex}(x - \sqrt 5 ) = 0{/tex}
{tex}\Rightarrow x = \sqrt 5 + \sqrt 2{/tex} or {tex}x = \sqrt 5 - \sqrt 2{/tex} or {tex}x = + \sqrt 5{/tex}
Hence the zeroes of given polynomoial are {tex}(\sqrt 5 + \sqrt 2 ),\;(\sqrt 5 - \sqrt 2 ){/tex} and {tex}\sqrt 5{/tex}.

  • 1 answers

Sia ? 6 years, 4 months ago


Given, In {tex}\triangle{/tex}ABC,

{tex}\angle{/tex}B = 2{tex}\angle{/tex}C .......(1)

 AD = CD ........(2)

AD bisects {tex}\angle{/tex}BAC.

So, {tex}\angle BAD = \angle DAC{/tex} =  {tex}\frac {1} {2}{/tex}{tex}\angle A{/tex}.....(3)

Since AD = CD ,hence in {tex}\triangle ADC{/tex} ;
 {tex}\angle{/tex}C = {tex}\angle{/tex}DAC.......(4) [angles opposite to equal sides are equal]
But from (1), 

 {tex}\angle{/tex}B  = 2{tex}\angle{/tex}C

 {tex}\Rightarrow{/tex} {tex}\angle{/tex}B = 2 {tex}\angle{/tex}DAC   [ from (4) ]
{tex}\Rightarrow{/tex} {tex}\angle{/tex}B = {tex}\angle{/tex}A   [ from (3) ] ..........(5)

Clearly , from (1) & (5) ;

 {tex}\angle A =\angle B =2 \angle C{/tex}.......(6)


Now, {tex}\angle{/tex}A + {tex}\angle{/tex}B + {tex}\angle{/tex}C = 180° [Angle Sum Property of triangle]
 {tex}\Rightarrow \angle A + \angle A + \frac{\angle A}{2} = 180°{/tex}
 {tex}\Rightarrow{/tex} {tex}\frac{4\angle A + \angle A}{2} =180°{/tex} 
{tex}\Rightarrow{/tex}{tex}\frac{5\angle A}{2} = 180°{/tex} {tex}\Rightarrow{/tex} {tex}\angle A{/tex}{tex}\frac{180^o \times 2}{5}{/tex}
{tex}\Rightarrow{/tex}{tex}\angle{/tex}A = 72o {tex}\Rightarrow{/tex} {tex}\angle{/tex}BAC = 72o

  • 2 answers

Amin Molla 7 years, 3 months ago

18 divided by 396 and multiplied by 550

Amin Molla 7 years, 3 months ago

25
  • 2 answers

Yashoda Bhati 7 years, 3 months ago

I did not understand the question

Anshumaan Sharma 7 years, 3 months ago

Ques glat hai
  • 1 answers

Sia ? 6 years, 4 months ago

–5 + (–8) + (–11) + …. + (–230)
This is an AP.
Here, a = –5
d = –8 –(–5) = –8 + 5 = –3
l = –230
Let the number of terms of the AP be n
We know that
l = a + (n - 1)d
{tex} \Rightarrow {/tex} -230 = -5 + (n - 1) (-3)
{tex} \Rightarrow {/tex} (n - 1) (-3) = -230 + 5
{tex} \Rightarrow {/tex} (n - 1) (-3) = -225
{tex} \Rightarrow n - 1 = \frac{{ - 225}}{{ - 3}} = 75{/tex}
{tex} \Rightarrow {/tex} n = 75 + 1
{tex} \Rightarrow {/tex} n = 76
Again, we know that
{tex}{S_n} = \frac{n}{2}(a + l){/tex}
{tex} \Rightarrow {S_{76}} = \frac{{76}}{2}\left[ {( - 5) + ( - 230)} \right]{/tex}
{tex} \Rightarrow {/tex} S76 = 38(-235)
{tex} \Rightarrow {/tex} S76 = -8930
Hence, the required sum is -8930.

  • 2 answers

Yogita Ingle 7 years, 3 months ago

Let us assume that √3 is a rational number.
That is, we can find integers a and b (≠ 0) such that √3 = (a/b)
Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.
√3b = a
⇒ 3b2=a2 (Squaring on both sides) → (1)
Therefore, a2 is divisible by 3
Hence ‘a’ is also divisible by 3.
So, we can write a = 3c for some integer c.
Equation (1) becomes,
3b2 =(3c)2
⇒ 3b2 = 9c2
∴ b2 = 3c2
This means that b2 is divisible by 3, and so b is also divisible by 3.
Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that √3 is rational.
So, we conclude that √3 is irrational.
 

Md Kaif 7 years, 3 months ago

It is prove same as root 2
  • 0 answers
  • 2 answers

Sam Upadhayay 7 years, 3 months ago

Mmar ke juta yyad dharaeb 71rupia pahele dai bhail baye aur na padha pepar banru

Riya Garg 7 years, 3 months ago

1 USD = 70.76 INR
  • 2 answers

Riya Gandhi 7 years, 3 months ago

1) Sin =p /h Cos=b/h Tan=p/b Cosec=h/p Sec=h/b Cot=b/p

Riya Garg 7 years, 3 months ago

•Sin = 1/cosec •Cos = 1/sec •Tan = 1/cot •Cosec = 1/sin •Sec = 1/cos •Cot= 1/tan •Tan = sin/cos
  • 3 answers

Abhishek Yadav 7 years, 3 months ago

-cos square thita

Khushi Tandi 7 years, 3 months ago

-cos square thita is right answer

Neha Sharma 7 years, 3 months ago

Cos square thita
  • 2 answers

Sweta Verma 7 years, 3 months ago

1 to 7 and 14 ,15 will also come

Aashwit Gupta 7 years, 3 months ago

Half yearly syllabus Ch1…2…3…4…5…6…7 ch will come

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App