No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Devanshi Grover 7 years, 3 months ago

Its not completely divisible... Answer is :-0.4285 approx

Anushka Biswas 7 years, 3 months ago

0.428571428571428
  • 3 answers

Anushka Biswas 7 years, 3 months ago

Hope this helps...

Anushka Biswas 7 years, 3 months ago

2x^2+x-6=0 required product is 2 into -6=-12 required difference is 1 options for factors are (6,2), (12,1),(3,4) perfect option is (3,4) required no. of split middle term is (-3,+4) 2x^2 -3x+4x-6=0 x(2x-3)+(2x-3)=0 (2x-3)(x+2)=0 2x-3=0,x+2=0 x=3/2,-2 so, the required roots are 3/2 and -2...

Shalabh Ranjan 7 years, 3 months ago

The roots are 2 and -3/7.
  • 2 answers

Dhruv Pawar 7 years, 3 months ago

But in some places this takes place.

Anushka Biswas 7 years, 3 months ago

No, (1-cosA)(1+cosA) Hoga...
  • 0 answers
  • 1 answers

Yogita Ingle 7 years, 3 months ago

x5 − y5 = (x − y)(x4 + x3y + x2y2 + xy3 + y4)

  • 1 answers

Sanjivani Gawade 7 years, 3 months ago

Whats that???
111
  • 1 answers

Sanjivani Gawade 7 years, 3 months ago

One hundred and eleven
  • 1 answers

Sia ? 6 years, 4 months ago

Given,
{tex}\frac { 1 } { ( a + b + x ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + x ) } - \frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { x - ( a + b + x ) } { x ( a + b + x ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { x ( a + b + x ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { x ( a + b + x ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} x(a + b + x) = -ab 
{tex}\Rightarrow{/tex} x2 + ax + bx + ab = 0

{tex}\Rightarrow{/tex} x(x +a) + b(x +a) = 0
{tex}\Rightarrow{/tex} (x + a) (x + b) = 0

{tex}\Rightarrow{/tex} x + a = 0 or x + b = 0
{tex}\Rightarrow{/tex} x = -a or x = -b.
Therefore, -a and -b are the roots of the  equation.

  • 2 answers

Arush Chaubey 7 years, 3 months ago

Thnx dear?

Manish Singh 7 years, 3 months ago

Let /2 be the rational no So it will in the form of a/b = /2 Now there are no common factors between "a and b" a/b =/2 a = /2b Do square on both side (a)^2 =(/2b)^2 a^2 = 2b^2 ••••••••••••••••••eq 1 Now according to theorem 2 will divide a^2 and 2 will divide a Now , let a = 2m Do square on both side (a)^2 = ( 2m)^2 a^2= 4m^2 ••••••••••••••••••••eq2 Now from eq 1 and 2 2b^2 =4m^2 b^2 = 4m^2 /2 b^2 = 2m^2 Now again according to theorem 2 will divide b^2 and 2 will divide b #there are common factor between a" and b Therfore it contradicts to our asumption that /2 is rational # /2 is irrational Hence proved If you liked answer then please give the vote ♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡♡
  • 1 answers

Piyush Patel 7 years, 3 months ago

Tan squareA ×cos square A Sin square A/Cos square A ×Cos squareA Sin square A(sin squareA+cos square A=1) 1-sin square A
  • 2 answers

Supriya Tiwari 7 years, 3 months ago

Yes

Ramanujan Mondal 7 years, 3 months ago

Plz pkz ans
  • 1 answers

Sowmya Sowmya 7 years, 3 months ago

12. 1st one 77by 8, 2nd one 49by 8 13. 228
  • 2 answers

Shailesh Kumar 7 years, 3 months ago

which polynomial? P(x)=?

Harsh Kumar 7 years, 3 months ago

Values which satisfy the polynomial
  • 1 answers

Yuv Raj 7 years, 3 months ago

Sorry your question is wrong 1,2,3,5 are not composite numbers... 4 is the smallest composite number .. Composite numbers are those numbers which have three or more than three factor ...
  • 1 answers

Chetna Rawal 7 years, 3 months ago

Let the width be x and length be x+4 2*x+2*(x+4)=2*36 2x+2x+8=72 4x=72-8 X=64/4 x=16 x+4=20
  • 1 answers

Lokesh Rawat 7 years, 3 months ago

Yesy
  • 1 answers

Sia ? 6 years, 4 months ago

The largest positive integer that will divide 398, 436 and 542 leaving reminders 7, 11 and 15 respectively is the HCF of the numbers (398 – 7), (436 – 11) and (542 – 15) i.e. 391, 425 and 527.
HCF of 391,425 and 527:
HCF of 425 and 391:
425 = 391 × 1 + 34
391 = 34 × 11 + 17
34 = 17 ×2 + 0
HCF of 425 and 391 = 17
527 = 17 × 31
Similarly, HCF of 17 and 527 = 17
So, HCF of (391,425 ,527) = 17
∴ Required number is 17.

Wt
  • 1 answers

Deva Priya 7 years, 3 months ago

???
  • 1 answers

Karm Modh 7 years, 3 months ago

5cot shiJsc628-3-2hsjdn8hwhFgwk
  • 1 answers

Sweta Verma 7 years, 3 months ago

53 ,23,8,-7 are the answers
  • 1 answers

Sia ? 6 years, 4 months ago


{tex}\because{/tex} BD : CD = 1 : 2
{tex}\therefore{/tex} Coordinate of D are
{tex}\left( \frac { 1 \times 4 + 2 \times - 1 } { 1 + 2 } , \frac { 1 \times 2 + 2 \times - 2 } { 1 + 2 } \right){/tex}, i.e, {tex}\left( \frac { 2 } { 3 } , \frac { - 2 } { 3 } \right){/tex}
AD = {tex}\sqrt { \left( \frac { 2 } { 3 } - 0 \right) ^ { 2 } + \left( \frac { - 2 } { 3 } - 3 \right) ^ { 2 } }{/tex}
{tex}= \sqrt { \frac { 4 } { 9 } + \frac { 121 } { 9 } } = \sqrt { \frac { 125 } { 9 } } = \frac { 5 \sqrt { 5 } } { 3 }{/tex} units
DP = AD - AP = {tex}\frac { 5 \sqrt { 5 } } { 3 } - \frac { 2 \sqrt { 5 } } { 3 } = \frac { 3 \sqrt { 5 } } { 3 } = \sqrt { 5 }{/tex} units
{tex}\therefore \frac { \mathrm { AP } } { \mathrm { DP } } = \frac { \frac { 2 \sqrt { 5 } } { 3 } } { \sqrt { 5 } } = \frac { 2 } { 3 }{/tex}
{tex}\Rightarrow{/tex} P divides AD in the ratio 2 : 3.
{tex}\therefore{/tex} x-coordinates of P is
x = {tex}\frac { 2 \times \frac { 2 } { 3 } + 3 \times 0 } { 2 + 3 } = \frac { 4 } { 15 }{/tex}
Similarly, y-coordinates of P is
y = {tex}\frac { 2 \times \frac { - 2 } { 3 } + 3 \times 3 } { 2 + 3 } = \frac { 23 } { 15 }{/tex}
 {tex}\therefore{/tex} Coordinates of P are {tex}\left( \frac { 4 } { 15 } , \frac { 23 } { 15 } \right){/tex}.

  • 1 answers

Mahi Singh Oboroi 7 years, 3 months ago

Mr. Hussain can u please write the whole question so that I or someone else can understand and may help you . Solving this problem
  • 0 answers
  • 1 answers

Md Zeeshan Alam 7 years, 3 months ago

√2
  • 1 answers

Sia ? 6 years, 4 months ago

Let the point of x-axis be P(x, 0)
Given A(2, -5) and B(-2, 9) are equidistant from P
That is PA = PB
Hence PA2 = PB2  → (1)
Distance between two points is {tex}\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}{/tex}
PA = {tex}\sqrt{[(2 - x)^2 + (-5 - 0)^2]}{/tex}
PA2 = 4 - 4x +x2 + 25
= x- 4x + 29
Similarly, PB2 = x+ 4x + 85
Equation (1) becomes
x- 4x + 29 = x+ 4x + 85
- 8x = 56
x = -7
Hence the point on x-axis is (-7, 0)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App