No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Harsh Malik 7 years, 2 months ago

10000
  • 1 answers

Sia ? 6 years, 6 months ago

q = a + (p - 1)d ..... (i)
p = a + (q - 1)d ...... (ii)
q - p = (p - 1 - q + 1)d
{tex}\frac{{q - p}}{{p - q}} = d{/tex}
{tex} \Rightarrow d = - 1{/tex}
Put the value of d in eq (i)
q = a + (p - 1) (-1)
{tex} \Rightarrow {/tex} q = a - p + 1
{tex} \Rightarrow {/tex} a = q + p - 1
ap+q = a +(p + q - 1)d
= (q + p - 1) + (p + q - 1) (-1)
= q + p - 1 - p - q + 1
= 0

  • 1 answers

Sia ? 6 years, 6 months ago

Given in triangle, {tex}{/tex}ABC DE {tex}\|{/tex} BC 
{tex}\frac { \mathrm { AD } } { \mathrm { DB } } = \frac { \mathrm { AE } } { \mathrm { EC } }{/tex} (by BPT)

{tex}\Rightarrow \quad \frac { x } { x - 2 } = \frac { x + 2 } { x - 1 }{/tex}
{tex}\Rightarrow{/tex} x(x - 1) = (x + 2)(x - 2)
{tex}\Rightarrow{/tex} x2 - x = x2 - 22 {tex}\Rightarrow{/tex} x2 - x = x2 - 4
{tex}\Rightarrow{/tex} x = 4

  • 1 answers

Ayush Verma 7 years, 2 months ago

1
  • 1 answers

Yogita Ingle 7 years, 2 months ago

Let the present age of son = x
So, the present age of father = 45 - x
5 years ago,
Age of son = x - 5
and age of the father = 45 - x - 5 = 40 - x
Now, product of their ages = 124

⇒  (x - 5) × (40 - x) = 124

⇒  40x - x2 - 5 × 40 + 5x = 124

⇒ 40x - x2 - 200 + 5x = 124

⇒  45x - x2 - 200 = 124

⇒ 45x - x2 - 200 - 124 = 0

⇒ 45x - x2 - 324 = 0

⇒ x2 - 45x + 324 = 0

⇒ x2 - 36x - 9x + 324 = 0

⇒  x(x - 36) - 9(x - 36) = 0

⇒  (x - 36)×(x - 9) = 0

⇒  x = 9, 36

If the present age of son is 9 years

then present age of father = 45 - 9 = 36 years

Again, if the present age of son is 36 years

then present age of father = 45 - 36 = 9 years

which is not possible.

So, the present age of son is 9 years and the present age of the father is 36 years.

  • 1 answers

Sia ? 6 years, 6 months ago

As DE {tex}\parallel{/tex} BC
{tex}\therefore \frac{AD}{AB}=\frac{AE}{AC}{/tex}{tex}{/tex}
.{tex}\frac{x}{2x+1}=\frac{x+3}{2x+8}{/tex}
(x + 3)(2x + 1) = x(2x + 8)
2x2 + x + 6x + 3 = 2x2 + 8x
3 = 8x - 7x
x = 3

  • 1 answers

Beauty Queen? Miss Sweetu? 7 years, 2 months ago

Sin^2 20°+sin(90°-20°)-tan^2 45° Sin^2 20°+cos^2 20°-tan^2 45° Now ,. Sin2 A + cos2 A = 1 ( identity) And tan 45 °= 1 tan2 45°= 1^2 1 - 1 =0.
  • 2 answers

Kunal Mishra 7 years, 2 months ago

for unique solutions a1/a2 is not equal to b1/b2 so 1 /3 is not equal to -2/k so k is not equal to -6 so k is all values except -6

Aditya Chauhan 7 years, 2 months ago

1/3=-2/k 1/3×2/k K=6
  • 1 answers

Dhanashri Kadam 7 years, 2 months ago

2x+3y=√2 Squaring both side (2x+3y)²=2 4x²+9y²+2.2x.3y=2 4x²+9y²+12xy=2 4x²+12xy+9y²=2 4x²+6xy+6xy+9y²=2 2x(2x+3y)+3y(2x+3y)=2 2x+3y=2 2x+3y=2
  • 1 answers

Aditya Chauhan 7 years, 2 months ago

A2=a+d,A4=a+3d 9=a+d 25=a+3d -16=-2d 8=d,a=1 b=a+2d b=1+2(8) b=1+16 b=17
  • 2 answers

Abdul Wajid Malik 7 years, 2 months ago

-5 and 7 are other zeros of the given polynomial

Ajay Pandey 7 years, 2 months ago

I do not know the answer
  • 1 answers

Yogita Ingle 7 years, 2 months ago

“The line segment in a triangle joining the midpoint of two sides of the triangle is said to be parallel to its third side and is also half of the triangle.”

  • 1 answers

Abhishek Kumar 7 years, 2 months ago

Please check your questions
  • 6 answers

Animesh Pawar 7 years, 2 months ago

Hiiii

Aastha Singh 7 years, 2 months ago

Thank you ... Animesh for being sooo kind

Nav Jyoti 7 years, 2 months ago

Book mei dekho

Animesh Pawar 7 years, 2 months ago

And sorry diagram nhi bna skta

Animesh Pawar 7 years, 2 months ago

Given:-Tri. ABC where DE parallel BC To proov:- AD/DB AE/EC Proof :- area of tri. ADE= 1/2×base×height Area(Ade) =1/2×DB×EN Similarly area(BDE) = 1/2×DB×EN therefore area(ADE) =1/2×AD×EN/1/2×DB×EN =AD/DB - - - 1 NOW, In tri. ADE and tri. DEC Area(ADE) =1/2×AE×DM Area(DEC) =1/2×EC×DM Therefore, area(ADE)/area(DEC)=1/2×AE×DM/1/2×EC×DM =AE/EC - - - - - 2 Tri.BDE and tri.DEC are on same base DE and between the same parallel BC and DE Area(BDE)=area(DEC) - - - 3 Therefore, from equation 1,2 and 3 AD/DB=AE/EC hence proved

Aastha Singh 7 years, 2 months ago

Please .....tommorow is my maths exam
  • 1 answers

Sia ? 6 years, 6 months ago

Let ABCD be a square and B (x, y) be the unknown vertex.
AB = BC
{tex} \Rightarrow {/tex}  AB2 = BC2 
 
{tex} \Rightarrow {/tex} (x + 1)2 + (y - 2)2 = (x - 3)2 + (y - 2)2
{tex} \Rightarrow {/tex} x2 + 1 + 2x + y2 + 4 - 4x = x2 - 6x + 9 + y2 + 4 - 4x
{tex} \Rightarrow {/tex} 2x + 1 = - 6x + 9
{tex} \Rightarrow {/tex} 8x = 8
{tex} \Rightarrow {/tex} x = 1 ........ (i)
In {tex}\triangle{/tex}ABC, AB2 + BC2 = AC2
{tex} \Rightarrow {/tex} (x + 1)2 + (y - 2)2 + (x - 3)2 + (y - 2)2 = (3 + 1)2 + (2 - 2)2
{tex} \Rightarrow {/tex}x2 + 1 + 2x + y2 - 4x + 4 + x2 +  9 - 6x + y2 + 4 - 2y = 16 + 0
{tex} \Rightarrow {/tex} 2x2 + 2y2 + 2x - 4y - 6x - 4y + 1 + 4 + 9 + 4 = 16
{tex} \Rightarrow {/tex} 2x2 + 2y2 - 4x - 8y + 2 = 0
{tex} \Rightarrow {/tex} x2 + y2 - 2x - 4y + 1 = 0 ..... (ii)
Putting the value of x in eq. (ii),
1 + y2 - 2 - 4y + 1 = 0 
{tex} \Rightarrow {/tex} y2 - 4y = 0 
{tex} \Rightarrow {/tex} y(y - 4) = 0
{tex} \Rightarrow {/tex} y = 0 or 4
Hence the other vertices are (1, 0) and (1, 4).

  • 1 answers

Kunal Mishra 7 years, 2 months ago

Middle value of xi if it has two values then we can take any of them
  • 1 answers

Sia ? 6 years, 4 months ago

Let a be the first term and d the common difference of the given A.P.
{tex}\therefore S_{p}=\frac{p}{2}{/tex} [2a + (p - 1)d] = q 
{tex}\Rightarrow{/tex} 2a + (p - 1)d {tex}=\frac{2 q}{p}{/tex}  ….(i)
And {tex}S_{q}=\frac{q}{2}{/tex} [2a + (q - 1)d] = p
{tex}\Rightarrow{/tex} 2a + (q - 1)d {tex}=\frac{2 p}{q}{/tex} ….(ii)
Subtracting eq. (ii) from eq. (i) we get
(p - q)d = {tex}\frac{2 q}{p}-\frac{2 p}{q}{/tex} {tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{2\left(q^{2}-p^{2}\right)}{p q}{/tex}
{tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{-2}{p q}{/tex}(p2 - q2)
{tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{-2}{p q}{/tex} (p + q)(p - q) {tex}\Rightarrow d=\frac{-2}{p q}{/tex} (p + q)
Substituting the value of d in eq. (i) we get
2a + (p - 1) {tex}\left[\frac{-2(p+q)}{p q}\right]=\frac{2 q}{p}{/tex}
{tex}\Rightarrow 2 a=\frac{2 q}{p}+\frac{2(p-1)(p+q)}{p q}{/tex}
{tex}\Rightarrow a=\frac{q}{p}+\frac{(p-1)(p+q)}{p q}{/tex}
{tex}a=\frac{q^{2}+p^{2}+p q-p-q}{p q}{/tex}
Now Sp+q {tex}=\frac{p+q}{2}{/tex} [2a + (p + q - 1)d
{tex}=\frac{p+q}{2}\left[\frac{2 q^{2}+2 p^{2}+2 p q-2 q-2 q}{p q}+\frac{(p+q-1)[-2(p+q)}{p q}\right]{/tex}
{tex}=\frac{p+q}{2}\left[\frac{2q^{2} + 2p^{2} + 2pq - 2p - 2q -2p^{2} -2 p q+2 p-2 p q-2 q^{2}+2 q}{p q}\right]{/tex}
{tex}=\frac{p+q}{2}\left[\frac{-2 p q}{p q}\right]{/tex} = -(p + q) hence proved.

  • 4 answers

Kunal Mishra 7 years, 2 months ago

It is non terminating but repeating and it is 0.333333333333333333

Yogita Ingle 7 years, 2 months ago

1/3= 0.333

#Abhisht Singh 7 years, 2 months ago

-3

K D 7 years, 2 months ago

-3
  • 1 answers

Sia ? 6 years, 4 months ago

x5 + a5 by x + a

We stop here since the remainder is zero,
So,
quotient {tex}= x ^ { 4 } - a x ^ { 3 } + a ^ { 2 } x ^ { 2 } - a ^ { 3 } x + a ^ { 4 }{/tex}
remainder = 0
Therefore,
{tex}\text { Quotient } \times \text { Divisor } + \text { Remainder }{/tex}
{tex}= \left( x ^ { 4 } - a x ^ { 3 } + a ^ { 2 } x ^ { 2 } - a ^ { 3 } x + a ^ { 4 } \right) ( x + a ) + 0{/tex}
{tex}= x ^ { 5 } + a x ^ { 4 } - a x ^ { 4 } - a ^ { 2 } x ^ { 3 } + a ^ { 2 } x ^ { 3 }{/tex}
{tex}+ a ^ { 3 } x ^ { 2 } - a ^ { 3 } x ^ { 2 } - a ^ { 4 } x + a ^ { 4 } x + a ^ { 5 }{/tex}
{tex}= x ^ { 5 } + a ^ { 5 }{/tex}
= Dividend
Therefore, the division algorithm is verified.

  • 1 answers

Abdul Wajid Malik 7 years, 2 months ago

All sides are equal
  • 4 answers

Kannu Kranti Yadav 7 years, 2 months ago

Ya √2 is an irrational number and u can prove it

Yash Varshney 7 years, 2 months ago

Yes

Rohit Sahani 7 years, 2 months ago

No

Pitt Kushwaha 7 years, 2 months ago

Yes
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference
pth term = a +(p - 1)d = q(given)-----(1)
qth term = a +(q - 1) d = p(given)-----(2)
subtracting (2) from (1)
(p-q)d=q-p
(p-q)d=-(p-q)
{tex}\therefore{/tex} d = -1
putting d=-1 in (i)
a - (p - 1) = q
{tex}\therefore{/tex} a=p+q-1
{tex}\therefore{/tex} (p + q)th term = a + (p + q - 1)d
= (p + q - 1) - (p + q - 1) = 0

  • 1 answers

Pitt Kushwaha 7 years, 2 months ago

Yes
  • 1 answers

#Abhisht Singh 7 years, 2 months ago

First of all learn all the formulas and then try...
  • 1 answers

Pitt Kushwaha 7 years, 2 months ago

Quotient is 3x^2+8x and reminder is 9x-2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App