No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Hubert Alan 3 years, 5 months ago

7429 =17×19×23
  • 0 answers
  • 0 answers
  • 2 answers

Sheetal Sharma 3 years, 5 months ago

X=1 ,Y=2

Naitik Keshri 3 years, 5 months ago

Answer
  • 0 answers
  • 0 answers
  • 1 answers

Sameer Sharma 3 years, 5 months ago

X + 1 is a factor of 2x3 + ax2 + 2bx + 1, so on substituting -1 in the polynomial we will get 0. On further calculation we get an equation: a - 2b = 1 - (1). Now we can find the value of a in terms of b and then substitute it in the equation given in the question: 2a - 3b = -4 - (2) . From here, we get b = -6 . Again substituting this value in the equation (1), we get the value of a to be - 11.
  • 2 answers
We have, Polynomial 25p2−15p+2 On comparing that, Ap2+Bp+C Then, A=25,B=−15,C=2 Given that, Sum of roots =α+β=A−B​ α+β=2515​ α+β=53​ Product of roots α.β=AC​ α.β=252​ Now, 2α1​and2β1​ Then, Sum of roots 2α1​+2β1​=4αβ2α+2β​ =24αβ(α+β)​ =2αβ(α+β)​=252×2​53​​=53​×425​=415​ 2α1​+2β1​=415​ Product of roots =2α1​×2β1​=4αβ1​=254×2​1​ =825​ So, the equation of polynomial is p2−(Sumofroots)p+productofroots ⇒p2−415​p+825​ ⇒88p2−30p+25​ Hence, this is the answer. Was this answer helpful? 131 2 SIMILAR QUESTIONS If α and β are the zeroes of the quadratic polynomial f(x)=2x2−5x+7, then find a quadratic polynomial whose zeroes are 2α+3β and 2α+3β. Hard View solution > If α and β are the zeros of the polynomial x2+4x+3, find the polynomial where zeros are 1+αβ​ and 1+βα​. We have, Polynomial 25p2−15p+2 On comparing that, Ap2+Bp+C Then, A=25,B=−15,C=2 Given that, Sum of roots =α+β=A−B​ α+β=2515​ α+β=53​ Product of roots α.β=AC​ α.β=252​ Now, 2α1​and2β1​ Then, Sum of roots 2α1​+2β1​=4αβ2α+2β​ =24αβ(α+β)​ =2αβ(α+β)​=252×2​53​​=53​×425​=415​ 2α1​+2β1​=415​ Product of roots =2α1​×2β1​=4αβ1​=254×2​1​ =825​ So, the equation of polynomial is p2−(Sumofroots)p+productofroots ⇒p2−415​p+825​ ⇒88p2−30p+25​ Hence, this is the answer. Was this answer helpful?

Keshav Kumar 3 years, 5 months ago

We have, Polynomial 25p 2 −15p+2 On comparing that, Ap 2 +Bp+C Then, A=25,B=−15,C=2 Given that, Sum of roots =α+β= A −B ​ α+β= 25 15 ​ α+β= 5 3 ​ Product of roots α.β= A C ​ α.β= 25 2 ​ Now, 2α 1 ​ and 2β 1 ​ Then, Sum of roots 2α 1 ​ + 2β 1 ​ = 4αβ 2α+2β ​ =2 4αβ (α+β) ​ = 2αβ (α+β) ​ = 25 2×2 ​ 5 3 ​ ​ = 5 3 ​ × 4 25 ​ = 4 15 ​ 2α 1 ​ + 2β 1 ​ = 4 15 ​ Product of roots = 2α 1 ​ × 2β 1 ​ = 4αβ 1 ​ = 25 4×2 ​ 1 ​ = 8 25 ​ So, the equation of polynomial is p 2 −(Sumofroots)p+productofroots ⇒p 2 − 4 15 ​ p+ 8 25 ​ ⇒ 8 8p 2 −30p+25 ​
  • 2 answers

Ganeah Das 3 years, 5 months ago

What is imaniafaction?how does it help in tha process of digestion

Ganeah Das 3 years, 5 months ago

What is gasetro intestinal treck? Name the asouiate organ with a proper diagram
  • 2 answers

Soumya Singh 3 years, 5 months ago

The value is 1/2

Mayuresh Bhardwaj 3 years, 5 months ago

1/2
  • 2 answers

Mayuresh Bhardwaj 3 years, 5 months ago

1/2

Suvrat Jain 3 years, 5 months ago

1/2
  • 2 answers

Sujal . 3 years, 5 months ago

X^2+5X+6. X( X+6) -1( X+6) (X+6) (X-1) X=-6. X= 1. Hence -6 and 1 are the zeroes of p(x)

Rajibul Hoque 3 years, 5 months ago

X²+5x+6 X²+2x+3x+6 X(x+2)+3(x+2) (X+2)(x+3) X+2 and x+3 are two zeroes of thise polynomial So x+2 =0 or x+3 = 0 X= -2 x = -3
  • 1 answers

Yash Punjabi 3 years, 5 months ago

x=1 , y= -1
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App