Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Yogesh Bindal 6 years, 11 months ago
- 1 answers
Posted by Rahul Gadge 6 years, 11 months ago
- 4 answers
Elina ❤️ 6 years, 11 months ago
Posted by Ankit Baghel 6 years, 11 months ago
- 7 answers
Posted by Aditya Dhanraj 6 years, 11 months ago
- 2 answers
Karuna Kashyap 6 years, 11 months ago
Posted by Nonu Kansal 6 years, 11 months ago
- 5 answers
Posted by Pulkit Singh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Given that first distance = 54 km.
Let x be the first speed of the train.
We know that {tex}\frac { \text { Distance } } { \text { Speed } }{/tex} = Time ={tex}\frac { \text {54} } { \text { x } }{/tex} hours
When 63 km cover at an average speed of 6 km/hr more than the first speed.
then Time ={tex}\frac { \text {63} } { \text { x+ 6 } }{/tex} hours
As per given condition
{tex}\frac { 54 } { x } + \frac { 63 } { x + 6 }{/tex} = 3 hours
{tex}\Rightarrow \frac { 54 ( x + 6 ) + 63 x } { x ( x + 6 ) }{/tex} = 3
{tex}\Rightarrow{/tex} 54(x + 6) + 63x = 3x(x + 6)
{tex}\Rightarrow{/tex} 54x + 324 + 63x = 3x2 + 18x
{tex}\Rightarrow{/tex} 117x + 324 = 3x2 + 18x
{tex}\Rightarrow{/tex} 3x2 - 117x - 324 + 18x = 0
{tex}\Rightarrow{/tex} 3x2 - 99x - 324 = 0
{tex}\Rightarrow{/tex} x2 - 33x - 108 = 0
{tex}\Rightarrow{/tex} x2 - 36x + 3x - 108 = 0
{tex}\Rightarrow{/tex} x(x - 36) + 3(x - 36) = 0
{tex}\Rightarrow{/tex} x + 3 = 0 or x - 36 = 0
{tex}\Rightarrow{/tex} x = -3 or x = 36
Speed cannot be negative and hence initial speed of the train is 36 km/hour.
Posted by Khwairakpam Chinglemba 6 years, 11 months ago
- 1 answers
S Sihag Ji 6 years, 11 months ago
Posted by Preet Sahil 6 years, 11 months ago
- 2 answers
Shubhendra Pratap Singh 6 years, 11 months ago
Jatin Gera 6 years, 11 months ago
Posted by Sushant Upadhyay 6 years, 11 months ago
- 0 answers
Posted by Arit Singh 6 years, 11 months ago
- 4 answers
Simar Simar 6 years, 11 months ago
Sushma Bhattoo 6 years, 11 months ago
Posted by Nonu Kansal 6 years, 11 months ago
- 1 answers
Vishnu Vishal 6 years, 11 months ago
Posted by Nonu Kansal 6 years, 11 months ago
- 2 answers
Aman Verma 6 years, 11 months ago
Posted by Abhishek Sharma 6 years, 11 months ago
- 2 answers
Posted by Aakriti Gupta 6 years, 11 months ago
- 1 answers
Deepanshi Agrawal 6 years, 11 months ago
Posted by Gaurav Singh 6 years, 11 months ago
- 0 answers
Posted by Šûpêř Hïť Šhàřmä Mon$Ter Burner 6 years, 11 months ago
- 2 answers
Šûpêř Hïť Šhàřmä Mon$Ter Burner 6 years, 11 months ago
Posted by Akki Invincible 6 years, 11 months ago
- 1 answers
Posted by Aditi Pandey 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let {tex}\alpha{/tex} and {tex}6\alpha{/tex} be the roots of equation.
We have, {tex}px^2-14x+8=0{/tex} where a= p, b = -14, c = 8
Sum of zeroes{tex} = -\frac ba = -\frac{-14}{p}{/tex}
{tex}\alpha +6\alpha=\frac{14}{p}{/tex}
{tex}7\alpha = \frac{14}{p}{/tex}
{tex}\alpha = \frac2p{/tex}............(i)
Also, Product of the zeroes {tex} = \frac 8p=\frac ca{/tex}
{tex}\alpha \times 6\alpha = \frac 8p{/tex}
{tex}6\alpha^2=\frac 8p{/tex}
From (i)
{tex}6(\frac{2}{p})^2=\frac 8p{/tex}
{tex}6\times \frac {4}{p^2}=\frac 8p{/tex}
{tex}\frac{6}{p^2}=\frac2p{/tex}
{tex}\frac 62=\frac{p^2}{p}{/tex}
{tex}Hence, \ p=3{/tex}
Posted by Labib Ansari 6 years, 11 months ago
- 3 answers
Yogita Ingle 6 years, 11 months ago
Find the prime factorization of 70
70 = 2 × 5 × 7
Find the prime factorization of 84
84 = 2 × 2 × 3 × 7
Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 2 × 2 × 3 × 5 × 7 = 420
Posted by Rohit Yadav 6 years, 11 months ago
- 1 answers
Shree Navaneethaa Elango 6 years, 11 months ago
Posted by Shaik Riyaz 6 years, 11 months ago
- 2 answers
Yogita Ingle 6 years, 11 months ago
- Find the prime factorization of 72
72 = 2 × 2 × 2 × 3 × 3 - Find the prime factorization of 96
96 = 2 × 2 × 2 × 2 × 2 × 3 - To find the H.C.F multiply all the prime factors common to both numbers:
Therefore, H.C.F = 2 × 2 × 2 × 3 - H.C.F = 24
Posted by Shrashti Khurani 6 years, 11 months ago
- 2 answers
Surbhi Yadav 6 years, 11 months ago
Posted by Ankit Raj 6 years, 11 months ago
- 1 answers
Posted by Devraj Singh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let ABC be the equilateral triangle such that,
A = (3,0), B=(6,0) and C=(x,y)
Distance between:
{tex}\sqrt {( x_{2}-x_{1})^2+(y_{2} -y_{1})^{2} }{/tex}
we know that,
AB=BC=AC
By distance formula we get,
AB=BC=AC=3units
AC=BC
{tex}\sqrt{(3-x)^2+y^2}=\sqrt{(6-x)^2+y^2}{/tex}
{tex}9+x^2-6 x+y^2=36+x^2-12 x+y^2{/tex}
{tex}6 x=27{/tex}
{tex}x=27 / 6=9 / 2{/tex}
BC = 3 units
{tex}\sqrt{(6-\frac{27}{6})^2+y^2}=3{/tex}
{tex}(\frac{(36-27)}{6})^2+y^2=9{/tex}
{tex}(\frac{9}{6})^2+y^2=9{/tex}
{tex}(\frac{3}{2})^2+y^2=9{/tex}
{tex}\frac{9}{4}+y^2=9{/tex}
{tex}9+4 y^2=36{/tex}
{tex}4 y^2=27{/tex}
{tex}y^2=\frac{27}{4}{/tex}
{tex}y=\sqrt{(\frac{27}{4})}{/tex}
{tex}y=3 \sqrt{\frac{3}{2}}{/tex}
{tex}(x, y)=(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}
Hence third vertex of equilateral triangle = C = {tex}(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}
Posted by Abhishek Singh 6 years, 11 months ago
- 3 answers
Abhishek Singh 6 years, 11 months ago
Posted by Rajat Kumar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let ABC be the equilateral triangle such that,
A = (3,0), B=(6,0) and C=(x,y)
Distance between:
{tex}\sqrt {( x_{2}-x_{1})^2+(y_{2} -y_{1})^{2} }{/tex}
we know that,
AB=BC=AC
By distance formula we get,
AB=BC=AC=3units
AC=BC
{tex}\sqrt{(3-x)^2+y^2}=\sqrt{(6-x)^2+y^2}{/tex}
{tex}9+x^2-6 x+y^2=36+x^2-12 x+y^2{/tex}
{tex}6 x=27{/tex}
{tex}x=27 / 6=9 / 2{/tex}
BC = 3 units
{tex}\sqrt{(6-\frac{27}{6})^2+y^2}=3{/tex}
{tex}(\frac{(36-27)}{6})^2+y^2=9{/tex}
{tex}(\frac{9}{6})^2+y^2=9{/tex}
{tex}(\frac{3}{2})^2+y^2=9{/tex}
{tex}\frac{9}{4}+y^2=9{/tex}
{tex}9+4 y^2=36{/tex}
{tex}4 y^2=27{/tex}
{tex}y^2=\frac{27}{4}{/tex}
{tex}y=\sqrt{(\frac{27}{4})}{/tex}
{tex}y=3 \sqrt{\frac{3}{2}}{/tex}
{tex}(x, y)=(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}
Hence third vertex of equilateral triangle = C = {tex}(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
intersecting at (a, b)
0Thank You