No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Maths Lover **** √Π÷= 6 years, 11 months ago

Yes but whenThe tangents drawn from an external point are equal not any two tangents are equal
  • 2 answers

Jaya Saji 6 years, 10 months ago

Which pencil(company)is preferable while drawing

Satyam Suman 6 years, 11 months ago

By using paper , pencil , scale ,compass ,eraser ,and never forget to use sharped pencil as it would deduct your marks Also never use pen in condtruction. Try to write the dimensions of every angle and line as it gives a good presentation. Also write the step of construction.
  • 1 answers

Jashan Singh 6 years, 11 months ago

First of find zeros and Make the table like Ex. X when put the value of X then the and. Ans. Is y
  • 1 answers

Puja Sahoo? 6 years, 11 months ago

144=2*2*2*2*3*3 120=2*2*2*3*5 lcm=2*2*2*2*3*3*5=720 hcf=2*2*2*3=24
  • 2 answers

Puja Sahoo? 6 years, 11 months ago

Ceck yur question, i think it should be, cos64×sin26 at last..........

Aryan Thind 6 years, 11 months ago

Plz give answer fast
  • 3 answers

Puja Sahoo? 6 years, 11 months ago

Yesss, its Tan 60°.....

Neha Sirur 6 years, 11 months ago

'Tan 60' as tan 60 stands fr √3 and value of it is 1.73

Lavina Rajput ??? 6 years, 11 months ago

Complete ur question!
  • 1 answers

Lavina Rajput ??? 6 years, 11 months ago

Solution:- Let the required terms of the given AP be a-d, a and a+d * Where the first term is a-d* The common difference = d* Given : The sum of the three parts = 24* ∴ (a-d)+(a)+(a+d) = 24 3a = 24 # a = 8# Given : The product of these three terms = 440 ∴ (a-d) (a) (a+d) = 440# (8-d) (8) (8+d) = 440# - 8d² + 512 = 440# - 8d² = 440 - 512# - 8d² = - 72# d² = 72/8# d² = 9# d = √9# d= 3# So the three required terms of AP is 8 - 3 = 5 ; 8 and 8 + 3 = 11 Three terms are 5, 8, 11
  • 6 answers

Augustya Singh 6 years, 11 months ago

Given d=-4 and T7=4 a+ 6d=4 a+6(-4)=4 a=4+24 a=28

Purvanshi Yadav 6 years, 11 months ago

Given that a7=4 a+6d=4 a+6(-4)=4 (d=-4) a-24=4 a=24+4 a=28

Aryan Thind 6 years, 11 months ago

A=12

Diksha Rana 6 years, 11 months ago

28

Diksha Rana 6 years, 11 months ago

_12

Anshika & Aliens???? 6 years, 11 months ago

A=28
  • 3 answers

Poonam Bais 6 years, 11 months ago

Question me tan A +cosA=p h yrr

Poonam Bais 6 years, 11 months ago

And again plz

Nikita Sharma 6 years, 11 months ago

I have already answered it earlier
  • 1 answers

Amna Nasim 6 years, 11 months ago

let us assume that root 2 is rational no. which is in the form of p/q , where q is not equal to 0. therefore, root 2 = p/q squaring both the sides 2 = p^2/q^2 2q^2 = p^2 ....(1) Here, 2 is divisible by p^2 therefore, 2 is also divisible by p let p = 2c [for some integer c] now, substituting p = 2c in equation (1). therefore, 2q^2 = 4c^2 that is q^2 = 2c^2 this means that 2 is divisible q^2 and so 2 is also divisible by q since p and q have 2 as a common factor this contradict the fact that p & q have no common factor other than 1. But this contradiction has arisen due to our wrong assumption that is root 2 is rational no. so, we conclude that root 2 is irrational.
  • 1 answers

Chiranjeevi Kt 6 years, 11 months ago

/ means what ? Then the answer comes
  • 2 answers

Puja Sahoo? 6 years, 11 months ago

Bt, polynomial hai kahan...?????

Chetna Pandey ? 6 years, 11 months ago

Where is the polynomial
  • 1 answers

Aditya Sanga 5 years, 4 months ago

hbj
  • 3 answers

Farhat Shaikh Shaikh 6 years, 11 months ago

Ram

Farhat Shaikh Shaikh 6 years, 11 months ago

I appreciate you

Ram Kushwah 6 years, 11 months ago

Mr Yuvraj ,

This is useless thing 2+2=5 is impossible,behave like a good student and do not waste your time.

May be somebody prove this by using 0\0=1,which is again wrong and useless.

  • 1 answers

Gaurav Seth 6 years, 11 months ago

Q.If the areas of two similar triangles are equal, prove that they are congruent.

<hr />

Solution:

  • 1 answers

Sia ? 6 years, 4 months ago

It is given that {tex} \alpha{/tex} and {tex} \beta{/tex} are the zeros of the polynomial {tex}f(x)=x^2-x-2{/tex}
Let,{tex}g(x)=k(x^2-Sx+P){/tex} be the required polynomial where 'S' is sum of zeroes and 'P' is product of zeroes.
Sum of zeroes of required polynomial (S)={tex}(2 \alpha+1)+(2 \beta+1)=2( \alpha+ \beta)+2=2 \times1+2=4{/tex}
Product of zeroes of required polynomial (P) = {tex}(2 \alpha+1) \times(2 \beta+1) = 4 \alpha \beta + 2 \alpha + 2 \beta + 1 = 4 \alpha \beta + 2 ( \alpha + \beta ) + 1{/tex}
{tex}=4 \times-2+2 \times1+1=-8+2+1=-5{/tex}                     
Hence, required polynomial g(x) is {tex}k(x^2-4x-5){/tex}, where k is any non-zero constant.

  • 3 answers

Anushka ? 6 years, 11 months ago

X is equal to - 600 or 500

Gaurav Seth 6 years, 11 months ago

We see that it is a quadratic polynomial.
so, splitting the middle term,
x²+100x-300000
 x²+600x - 500x - 300000 =0
x(x+600) -500(x+600) = 0
(x-500)(x+600) = 0

X = 500 or X = -600

Yogita Ingle 6 years, 11 months ago

x2 + 100x - 300000 = 0
x2 + 600x - 500x - 300000 = 0
x(x + 600) - 500 (x + 600) = 0
(x + 600) (x - 500) = 0
x = -600 and x = 500

  • 0 answers
  • 0 answers
  • 2 answers

Ram Kushwah 6 years, 11 months ago

Let O(2a-1,7) is the center and A(-3,-1) is on the circumference then

OA=r=20/2=10

{tex}\begin{array}{l}OA^2=10^2=100\\or\;\;(2a-1+3)^2+(7+1)^2=100\\\;\;(2a+2)^2+64=100\\4a^2+8a+4+64=10\\4a^2+8a-32=0\\a^2+2a-8=0\\(a+4)(a-2)=0\\Hene\;a=-4\;and\;2\end{array}{/tex}

 

Gawsic Varun 6 years, 11 months ago

I dont know
  • 7 answers

Augustya Singh 6 years, 11 months ago

x2-2kx-6=0 (3)square-6k-6 9-6k-6=0 3-6k=0 -6k=-3 k=-3/-6 k =1/2

Murari Barnwal 6 years, 11 months ago

(x)2 -2kx -6=0 ,(3)2-2k(3)-6=0 9-6k-6=0 3-6k=0 So, k=1/2

Yogita Ingle 6 years, 11 months ago

k = 1/2

Yogita Ingle 6 years, 11 months ago

sorry wrong solution added.
Correct solution is
x2 - 2kx - 6 = 0
x = 3
(3)2 - 2k(3) - 6 = 0
9 - 6k - 6 = 0
- 6k + 3 = 0
6k = 3
k = 3/6
k = 1/3

Yogita Ingle 6 years, 11 months ago

x2 - 2kx - 6 = 0
x = 3
(3)2 - 2k(3) - 6 = 0
9 - 6k - 6 = 0
2 - 6k = 0
6k = 2
k = 2/6
k = 1/3

Jiya Arora????? 6 years, 11 months ago

Let p(x)=x^2-2kx-6 Let X = 3 in p(x) p(3)=(3)^2 - 2k(3) -6 =9-6k-6 =3-6k -3=-6k 3=6k 3/6=k 1/2=k

X Y 6 years, 11 months ago

Value of k=6
  • 2 answers

Shreyanka Das 6 years, 11 months ago

Very nice explain gaurav seth

Gaurav Seth 6 years, 11 months ago

1-sinA/1+sinA=(secA-tanA)²


L.H.S

1-sinA/1+sinA


Rationalising the denominator



1-sinA (1-SinA) /1+sinA(1-SinA)


(1-SinA)²/ 1² -(Sin²A)


(1-SinA)²/ 1 -(Sin²A)




(1-SinA)² /Cos² A


[ 1 -Sin²A = cos²A]


(1-SinA/CosA)²



(1/CosA-SinA/CosA)²


(SecA-tanA)²



L.H S = R H.S
  • 1 answers

Sia ? 6 years, 4 months ago

Given : {tex}\triangle \mathrm{ABC}{/tex} is right angle at B
To prove:  {tex}A C^{2}=A B^{2}+B C^{2}{/tex}

Construction: Draw {tex}B D \perp A C{/tex}

Proof:In {tex}\triangle{/tex}ABC and {tex}\triangle{/tex}ABD

{tex}\angle{/tex}ABC={tex}\angle{/tex}ADB=90

{tex}\angle{/tex}A is common 

{tex}\angle{/tex}ABC{tex}\sim{/tex}{tex}\angle{/tex}ADB
{tex}\Rightarrow \frac{A D}{A B}=\frac{A B}{A C}{/tex}
{tex}\Rightarrow{/tex} AD. AC = AB2 ...(i)
Similarly {tex}\Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}{/tex}
{tex}\Rightarrow \frac{C D}{B C}=\frac{B C}{A C}{/tex}
{tex}\Rightarrow{/tex} CD.AC = BC2 ...(ii)
Adding (i) and (ii) 
AD.AC + CD. AC= AB2 + BC2
AC(AD + CD) = AB2 + BC2
AC {tex}\times{/tex} AC = AB2 + BC2
AC2 = AB2 + BC2
Hence Proved

  • 4 answers

Augustya Singh 6 years, 11 months ago

1/3+ 9/4=4+27/12=31/12

Shreyanka Das 6 years, 11 months ago

Tan²30°=√1/3 Cos²30°=√3/2 So, (√1/3)²+3(√3/2)² 1/9+3x3/4 1/9+9/4 4+81/36 85/36 is the answer

Bhavya Choubey 6 years, 11 months ago

Sorry answer is 11/12......by mistAke wrong answer posted

Bhavya Choubey 6 years, 11 months ago

1/3 + 3/2=5/6
  • 0 answers
  • 3 answers

Shreyanka Das 6 years, 11 months ago

CosA =2/5=b/h P= √h²-b² =√5²-2² =√25-4=√21 Now, tan²A=(√21)²/2² =21/4 According to question, 4+4×21/4=4+21=25 So the right answer is 25.... Hope it helps you a lot....

Madhu Singh 6 years, 11 months ago

25

Anjali Kumari? 6 years, 11 months ago

25

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App