No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Shivam The Galaxy 5 years, 8 months ago

1.414
  • 4 answers

Jasmine ? 6 years, 11 months ago

I have checked it... But i didn't understand

Anushka ? 6 years, 11 months ago

It's too long.. So plz go through Internet..

Jasmine ? 6 years, 11 months ago

Can u give me the full ans

Anushka ? 6 years, 11 months ago

120/95
  • 1 answers

Chetna Pandey ? 6 years, 11 months ago

X= 1/2
  • 4 answers

Aditi Richhariya 6 years, 11 months ago

Not understand what you ask

S.P Singh 6 years, 11 months ago

30°

Chetna Pandey ? 6 years, 11 months ago

Sorry but my maths language is english......but yours is hindi so it's not easy for me to solve your question well again sorry but I hope someone will give u answer soon...

Anushka ? 6 years, 11 months ago

???.... Not able to understand ur question
  • 2 answers

Anushka ? 6 years, 11 months ago

Solve rhs and lhs separately by putting the value of m and n

Anushka ? 6 years, 11 months ago

Ya, I got the answer Bro..
  • 3 answers

Ram Kushwah 6 years, 11 months ago

Sorry x=4/20=1/5 and y=-2

Ram Kushwah 6 years, 11 months ago

{tex}\begin{array}{l}\frac4{\mathrm x}+3\mathrm y=14\;\;-----(1)\\\frac3{\mathrm x}-4\mathrm y=23\;-----(2)\\\mathrm{Multiply}\;(1)\;\mathrm{by}\;3\;\mathrm{and}\;(2)\;\mathrm{by}\;(4)\;\mathrm{we}\;\mathrm{get}\\\frac{12}{\mathrm x}+9\mathrm y=42----(3)\\\frac{12}{\mathrm x}-16\mathrm y=92\;----(4)\\\mathrm{Subtracting}\;(4\;\mathrm{from}(3)\mathrm{we}\;\mathrm{get}\\0\;+25\mathrm y=42-92=-50\\\mathrm{So}\;\;\mathrm y=-50/25=-2\\\\\\\end{array}{/tex}

{tex}\begin{array}{l}\mathrm{puttig}\;\mathrm{value}\;\mathrm{of}\;\mathrm y\;\mathrm{in}\;(\;1)\;\mathrm{we}\;\mathrm{get}\\\;4/\mathrm x+3\mathrm y=14\;\\\;4/\mathrm x+3(-2)=14\\4/\mathrm x-6=14\;\\4/\mathrm x=20\;\;\;\mathrm{So}\;\mathrm x=5/20=1/4\;\;\;\mathrm{and}\;\mathrm y=\;-2\;\mathrm{ans}\\\\\\\end{array}{/tex}

Abhishek Anand 6 years, 11 months ago

x=0 and y=19/25
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

n- n = n (n- 1) = n (n - 1) (n + 1) 
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.
⇒ n (n – 1) (n + 1) is divisible by 3. 
Similarly, whenever a number is divided by 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n is divisible by 2.
If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.
⇒ n (n – 1) (n + 1) is divisible by 2.
Since, n (n – 1) (n + 1) is divisible by 2 and 3.
∴ n (n-1) (n+1) = n- n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6) 

  • 1 answers

Sia ? 6 years, 6 months ago

Let APB be the tangent and take O as centre of the circle.

Let us suppose that MP{tex}\bot{/tex}AB does not pass through the centre.
Then,
{tex}\angle OPA = 90^\circ{/tex} [{tex}\because{/tex} Tangent is perpendicular to the radius of circle]
But {tex}\angle MPA = 90^\circ{/tex} [Given]
{tex}\therefore \angle OPA = \angle MPA{/tex}
This is only possible when point O and point M coincide with each other.
Hence, the perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.

  • 1 answers

Ram Kushwah 6 years, 11 months ago

volume of cuboid tank =4 x 3 x 2={tex}24 m^3=24000000 cm^3{/tex}

volume of overhead tank={tex}\mathrm{πr}^2\mathrm h=.3.14\times60\times60\times80=904320\;\mathrm{cm}^3{/tex}

{tex}\begin{array}{l}\mathrm{Water}\;\mathrm{left}\;\mathrm{in}\;\mathrm{the}\;\mathrm{cuboidal}\;\mathrm{tank}\\=24000000-904320\;=2309560\;\mathrm{cm}^3\\\end{array}{/tex}

so height of water in the cuboid tank

{tex}\begin{array}{l}=\frac{\mathrm{volume}}{\mathrm{area}}=\frac{2309560}{400\times300}=19.246\;\;\mathrm{cm}\\\end{array}{/tex}

  • 1 answers

Anshika & Aliens???? 6 years, 11 months ago

The angular points are1) (3,4). 2) (1,-1). 3) (-1,-6) 4) (1,-1).
  • 1 answers

Rupal ???? 6 years, 11 months ago

If length of arc and radius is given then; Theta /360×2πr=length of arc
  • 1 answers

Sonu Kumar 6 years, 11 months ago

Answer the question
  • 2 answers

Deepthi ? 6 years, 11 months ago

Is it x=0 or x=4

Deepthi ? 6 years, 11 months ago

Using distance formula solve for AO^2 =BO^2
  • 0 answers
  • 1 answers

Gaurav Seth 6 years, 11 months ago

By Euclid division Lemma,given two positive integers a and b, there exist
unique integers m and r satisfying

a = bm + r, 0 ≤ r < b.

Let b=3
Then r can be 0,1,2
Then By Euclid division lemma as

a can be 3m or 3m+1 or 3m+2.

Thus,every positive integer can be written in the form 3m+r,where r = (0,1,2)
  • 1 answers

Sia ? 6 years, 4 months ago

Less than 50 55 60 65 70 75 80
Frequency 0 2 10 22 46 84 100
  • 2 answers

Suhana Nadaf 6 years, 11 months ago

No

Nimanpreet Kaur 6 years, 11 months ago

0
  • 1 answers

Sia ? 6 years, 6 months ago

L.H.S 

= (1 + cotA + tanA) (sinA - cosA)

= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA
{tex}= \sin A - \cos A + \frac{{\cos A}}{{\sin A}} \times \sin A - \cot A\cos A + \sin A\;\tan A - \frac{{\sin A}}{{\cos A}} \times \cos A{/tex}
= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA
=  sinA tanA - cotA cosA........(1)


Now taking ;
{tex}\quad \frac{{\sec A}}{{\cos e{c^2}A}} - \frac{{\cos ecA}}{{{{\sec }^2}A}}{/tex}
{tex} = \frac{{\frac{1}{{\cos A}}}}{{\frac{1}{{{{\sin }^2}A}}}} - \frac{{\frac{1}{{\sin A}}}}{{\frac{1}{{{{\cos }^2}A}}}}{/tex}
{tex} = \frac{{{{\sin }^2}A}}{{\cos A}} - \frac{{{{\cos }^2}A}}{{\sin A}}{/tex}
{tex} = \sin A \times \frac{{\sin A}}{{\cos A}} - \cos A \times \frac{{\cos A}}{{\sin A}}{/tex}
{tex} = \sin A \times \tan A - \cos A \times \cot A{/tex}.......(2)

From (1) & (2),

(1 + cotA + tanA) (sinA - cosA) = {tex}\frac { \sec A } { cosec ^ { 2 } A } - \frac { cosec A } { \sec ^ { 2 } A }{/tex} = sinA.tanA - cosA.cotA 

Hence, Proved.

  • 3 answers

@Jay Bunkar 6 years, 11 months ago

-8)

Sahil Singh 6 years, 11 months ago

-8

Vishakha Singh? 6 years, 11 months ago

(-8)
  • 3 answers

Vishakha Singh? 6 years, 11 months ago

3825?

Sushant Thareja 6 years, 11 months ago

Sn=3825

Puja Sahoo? 6 years, 11 months ago

3825
  • 5 answers

Puja Sahoo? 6 years, 11 months ago

Yup......

Tanya Zanzad 6 years, 11 months ago

Yo ans is correct

Tanya Zanzad 6 years, 11 months ago

????????Mera answer correct nikla fir test mein ...

Puja Sahoo? 6 years, 11 months ago

Shadow hai to i think niche hi rhega

Puja Sahoo? 6 years, 11 months ago

25 root 3 m
  • 0 answers
  • 3 answers

Vishu Joshi 6 years, 11 months ago

11 - 6 = 5m = height Now base = 12 m So by pythagores theorem ( Hyp) ^2 = ( height ) ^2 + (base)^2 = (5)^2 + (12)^2 = 25 + 144 = 169 Hyp =√ 169 Hyp = 13 m The distance between tops is 13 m

. . 6 years, 11 months ago

In metres

. . 6 years, 11 months ago

12+1

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App