No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Hitesh Rajpurohit 6 years, 10 months ago

_17
  • 3 answers

Nakul Sharma 6 years, 10 months ago

X=4,-15

Yogita Ingle 6 years, 10 months ago

x2 + 11x - 60
= x2 + 15x - 4x - 60
= x ( x + 15) - 4 ( x +15)
= (x + 15) (x - 4)

Deepanshi Tayal 6 years, 10 months ago

X=4 and -15
  • 1 answers
You have to learn all formulas of ncert textbook and then solve sample papers ,list 2 sample paper
  • 2 answers

Kratika Nyati 6 years, 10 months ago

X=√6√6√6√6...... X=√6+x X^2= 6+x X^2-x-6=0 X^2-3x+2x-6=0 (X-3)(X+2)=0 X=3,-2

Deepanshi Tayal 6 years, 10 months ago

6√6 or 14.69
  • 1 answers

Deepanshi Tayal 6 years, 10 months ago

No as the quadatric equation is in the form of ax^2+ bx + c =0
  • 1 answers

Sia ? 6 years, 4 months ago

LHS = {tex}\frac { \tan \theta } { 1 - \cot \theta } + \frac { \cot \theta } { 1 - \tan \theta }{/tex}
{tex}= \frac { \frac { \sin \theta } { \cos \theta } } { 1 - \frac { \cos \theta } { \sin \theta } } + \frac { \frac { \cos \theta } { \sin \theta } } { 1 - \frac { \sin \theta } { \cos \theta } }{/tex} {tex}\left[ \because \tan \theta = \frac { \sin \theta } { \cos \theta } , \cot \theta = \frac { \cos \theta } { \sin \theta } \right]{/tex}
{tex}= \frac { \sin ^ { 2 } \theta } { \cos \theta ( \sin \theta - \cos \theta ) } + \frac { \cos ^ { 2 } \theta } { \sin \theta ( \cos \theta - \sin \theta ) }{/tex}
{tex}= \frac { \sin ^ { 2 } \theta } { \cos \theta ( \sin \theta - \cos \theta ) } - \frac { \cos ^ { 2 } \theta } { \sin \theta ( \sin \theta - \cos \theta ) }{/tex}
{tex}= \frac { \sin ^ { 3 } \theta - \cos ^ { 3 } \theta } { \sin \theta \cos \theta ( \sin \theta - \cos \theta ) }{/tex} 
{tex}= \frac { ( \sin \theta - \cos \theta ) \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta + \sin \theta \cos \theta \right) } { ( \sin \theta - \cos \theta ) \sin \theta \cos \theta }{/tex} [ a3 - b3 = (a - b)(a2 + ab + b2) ]
{tex}= \frac { 1 + \sin \theta \cos \theta } { \sin \theta \cos \theta }{/tex}
{tex}= \frac { 1 } { \sin \theta \cos \theta } + 1 = 1 + \sec \theta cosec \theta{/tex} = RHS
therefore, RHS = LHS

  • 5 answers

Puja Sahoo? 6 years, 10 months ago

Bro,here, yu can solve it without putting any, frustum formula.......ye question aj exam me aya tha

Shivank Johari 6 years, 10 months ago

Can you just tell me that what is the formula of csa , tsa and volume of a frustum of a cone

Shivank Johari 6 years, 10 months ago

This question is quite good

Puja Sahoo? 6 years, 10 months ago

Can yu explain or just give me hint........

Raghav Garg 6 years, 10 months ago

1:2
  • 2 answers

Balbir Singh 6 years, 10 months ago

Let, a is any positive integer. Divide a by 3 so the possible remainder is 0,1,2 for the quotient q and some integer m. So, a can be written as 3q , 3q+1 , 3q+2. Now, =(3q)2 =9q2 =3(3q2) =3m And =(3q+1)2 =9q2+6q+1 =3(3q2+2)+1 =3m+1 And =(3q+2)2 =9q2+12q+4 =9q2+12q+3+1 =3(3q2+4q+1)+1 =3m+1 HENCE PROVED

Shivank Johari 6 years, 10 months ago

BhAi ncert solution dekh le
  • 3 answers

Sneha Singh 6 years, 10 months ago

(a+b)² = a²+ b²+2ab

Hitesh Rajpurohit 6 years, 10 months ago

(a+b)2=a2 + 2ab + b2

Puja Sahoo? 6 years, 10 months ago

(a + b)2 = a2 + b2 + 2ab
  • 1 answers

Puja Sahoo? 6 years, 10 months ago

*Sides :- all 4 sides are congruent *Angles :- diagonals bisect vertex angles *Diagonals :- diagonals are perpendicular Area .............
  • 3 answers

Shivank Johari 6 years, 10 months ago

13.5+4.5=18cm ???

Shivank Johari 5 years, 8 months ago

Correct answer is 216√6

Neha Sirur 6 years, 10 months ago

AC=18cm
  • 1 answers

Neha Sirur 6 years, 10 months ago

Hcf=9
  • 2 answers

Amy James 6 years, 10 months ago

S.s , science , maths

Neha Sirur 6 years, 10 months ago

Which subject do u want??
  • 1 answers

Sia ? 6 years, 4 months ago

Assume that the ratio of the altitude of the bigger and smaller cone be l : L

Let R and r be the radii of the bigger and smaller cone respectively.

Let H and h be the height of the bigger and smaller cone respectively.
Clearly, {tex}\Delta V O ^ { \prime } A ^ { \prime } \sim \Delta V O A{/tex}
{tex}\therefore \quad \frac { V O ^ { \prime } } { V O } = \frac { O ^ { \prime } A ^ { \prime } } { O A } = \frac { V A ^ { \prime } } { V A } \Rightarrow \frac { h } { H } = \frac { r } { R } = \frac { l } { L }{/tex}
It is given that
Curved surface area of the frustum ABB'A = {tex}\frac { 8 } { 9 } \times{/tex}Curved surface area of the cone

{tex}\Rightarrow \quad \pi ( R + r ) ( L - l ) = \frac { 8 } { 9 } \pi R L{/tex}
{tex}\Rightarrow \quad ( R + r ) ( L - l ) = \frac { 8 } { 9 } R L{/tex}
{tex}\Rightarrow \quad \left( \frac { R + r } { R } \right) \left( \frac { L - l } { L } \right) = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \left( 1 + \frac { r } { R } \right) \left( 1 - \frac { l } { L } \right) = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \left( 1 + \frac { h } { H } \right) \left( 1 - \frac { h } { H } \right) = \frac { 8 } { 9 }{/tex} [Using (i)]
{tex}\Rightarrow \quad 1 - \frac { h ^ { 2 } } { H ^ { 2 } } = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { H ^ { 2 } } = 1 - \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { H ^ { 2 } } = \frac { 1 } { 9 } \Rightarrow \frac { h } { H } = \frac { 1 } { 3 } \Rightarrow h = \frac { H } { 3 }{/tex}
Hence, required ratio = {tex}\frac { h } { H - h } = \frac { \frac { H } { 3 } } { H - \frac { H } { 3 } } = \frac { 1 } { 2 }{/tex}

  • 1 answers

Neha Sirur 6 years, 10 months ago

By proving similarity between triangles through AA then showing the ratio of sides by SSS
  • 1 answers

Sia ? 6 years, 4 months ago


Let {tex}r {/tex} cm be the radius of each circle.
Area of square - Area of 4 sectors = {tex}\frac { 24 } { 7 } \mathrm { cm } ^ { 2 }{/tex}
(side)2 -  {tex}4\left[\frac\theta{360}\mathrm{πr}^2\right]{/tex} = {tex}\frac { 24 } { 7 } \mathrm { cm } ^ { 2 }{/tex}
or, {tex}( 2 r ) ^ { 2 } - 4 \left( \frac { 90 ^ { \circ } } { 360 ^ { \circ } } \times \pi r ^ { 2 } \right) = \frac { 24 } { 7 }{/tex}
or, {tex}( 2 r ) ^ { 2 } - 4 \left( \frac { 1 } { 4 ^ { \circ } } \times \pi r ^ { 2 } \right) = \frac { 24 } { 7 }{/tex}
or, {tex}( 2 r ) ^ { 2 } - \left( \pi r ^ { 2 } \right) = \frac { 24 } { 7 }{/tex}
or, {tex}4 r ^ { 2 } - \frac { 22 } { 7 } r ^ { 2 } = \frac { 24 } { 7 }{/tex}
or, {tex}\frac { 28 r ^ { 2 } - 22 r ^ { 2 } } { 7 } = \frac { 24 } { 7 }{/tex}
or, {tex}6r^2 = 24{/tex}
or, {tex}r^2 = 4{/tex}
or, {tex}r = \pm 2{/tex}
or, Radius of each circle is 2 cm (r cannot be negative)

  • 1 answers

Sia ? 6 years, 4 months ago

We have to draw

ΔPQR ~ ΔABC

PQ = 8 cm

∴ {tex}\frac { P Q } { A B } = \frac { 8 } { 6 } = \frac { 4 } { 3 }{/tex} (∵ AB = 6 cm)

So, PQ = QR = 8 cm

So, we have to draw ΔPQR ~ ΔABC with scale factor {tex}\frac { 4 } { 3 }{/tex} > 1 resulting ΔPQR will be larger than ΔABC.

Steps of Construction:

  1. Draw BC = 5 cm
  2. Draw two arcs of 6 cm each from B and C in same direction let it be upside.
  3. Join AB and AC.
  4. Draw acute ∠CBX and mark B, B1, B2, B3, B4 with compass.
  5. Join B3C and draw B4R || B3C, R is on BC produced.
  6. Again, draw RP || CA. P is on BA produced.

Therefore, ΔPQR ~ ΔABC with PQ = PR = 8 cm. It’s scale factor is {tex}\frac { 4 } { 3 }{/tex}.

  • 0 answers
  • 2 answers

Aryan Shishodia 6 years, 10 months ago

TAN A= COT A THEN, TANA= TAN(90-A) THEREFORE, A=90-A 90=2A A=45 THEREFORE SECA=SEC45=ROOT 2 HOPE YOU LIKE MY APPROACH!!!!!?

Susmita Mandal 6 years, 10 months ago

√2
  • 1 answers

Marrisetty Jayalakshmi 6 years, 10 months ago

Rootp+rootq=a÷b Squaring P+Q+2rootPQ=a÷b whole square RootPQ=1/2((a/b)2-P-Q) Now p and q are prime positive numbers so RootP and Root Q is irrational Also RootPQ Irrational=rational So contridiction
  • 2 answers

Yogita Ingle 6 years, 10 months ago

Co-prime number is a set of numbers or integers which have only 1 as their common factor. That is their highest common factor (HCF) will be 1. It is also known as relatively prime or mutually prime numbers.

Consider a set of two numbers, if they have no positive integer that can divide both, other than 1, the pair of numbers is co-prime.

Ex 1:  21 and 22

21 and 22:

  • The factors of 21 are 1, 3, 7 and 21.
  • The factors of 22 are 1, 2, 11 and 22.

Here 21 and 22 have only one common factor that is 1.Hence their HCF is 1 and are co-prime.

Gautam Chhipa 6 years, 10 months ago

No which have there common hcf .

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App