No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Pruthviraj Gurav 6 years, 10 months ago

First assume √m + √n are rational number P/q are co-primes √m+√n =p/q √n=p/q -√m √n is irrational therefore √m +√n are irrarional
  • 1 answers

Ashwani Yadav 6 years, 10 months ago

No one is there to answer my question.
  • 3 answers

Surendrapal Singh Singh Gaur 6 years, 10 months ago

Thank u guys!! Problem is of page 13.33 exercise 13.3 ques 9 of level 2

Achal Bharadwaj 6 years, 10 months ago

I ll solve

Ashwani Yadav 6 years, 10 months ago

Yes I can.
  • 1 answers

Achal Bharadwaj 6 years, 10 months ago

Let us assume that √3 is a rational number a and b are coprime number a/b =√3 a square /b square = 3 b square =a square /3. ---------------- (1) 3 divides a square , 3div a also a = 3c ------------------------- (2) Substitute (2) in (1) b square = (3c) square / 3 =9c square /3 = 3c square c square = b square /3. ---------------(3) 3div a square , 3div a also From (1) (2) (3) There is a contradiction to our assumption that a and b are coprime number Therefore √3 is an irrational number HENCE PROVED ✓
  • 1 answers

Honey ??? 6 years, 10 months ago

Let a any +ve integer and b=6. Bet. them integers will be 0,1,2,3,4,5 so a=6q,6q+1,6q+2,...............6q+5. But we need only odd integers so 6q+1,6q+3,6q+5 are positive odd integer
  • 1 answers

Sia ? 6 years, 4 months ago

A(1, -2), B(2, 3), C(a, 2) and D(-4, -3)are the vertices of a parallelogram.
{tex}\Rightarrow{/tex}AB = CD and AD = BC
Consider AD = BC
{tex}\Rightarrow{/tex}AD2 = BC2
{tex}\Rightarrow{/tex}(-4 -1)2 + (-3 + 2)2 = (a - 2)2 + (2 - 3)2
{tex}\Rightarrow{/tex}(-5)2 = (a - 2)2
{tex}\Rightarrow{/tex} a - 2 = -5
{tex}\Rightarrow{/tex} a = -3
Area of {tex}\Delta A B C = \frac { 1 } { 2 } | 1 ( 3 - 2 ) + 2 ( 2 + 2 ) - 3 ( - 2 - 3 ) |{/tex}
{tex}= \frac { 1 } { 2 } | 1 + 8 + 15 |{/tex}
{tex}= \frac { 1 } { 2 } \times 24{/tex}
= 12 sq. units.
Diagonal of a parallelogram divides it into two equal triangles.
Area of parallelogram ABCD = 2 {tex}\times{/tex}12=24 sq. units
{tex}\Rightarrow {/tex} AB {tex}\times{/tex}Height = 24
{tex}\Rightarrow {/tex} AB{tex}\times{/tex}Height = 24
{tex}\Rightarrow \left[ \sqrt { ( 2 - 1 ) ^ { 2 } + ( 3 + 2 ) ^ { 2 } } \right] \times \text { Height } = 24{/tex}
{tex}\Rightarrow [ \sqrt { 1 + 25 } ] \times \text { Height } = 24{/tex}
{tex}\Rightarrow \text { Height } = \frac { 24 } { \sqrt { 26 } } = \frac { 12 \times \sqrt { 2 } \times \sqrt { 2 } } { \sqrt { 13 } \times \sqrt { 2 } }{/tex}
{tex}= \frac { 12 \sqrt { 2 } } { \sqrt { 13 } }{/tex}

  • 4 answers

Sneha Singh 6 years, 10 months ago

Hb gungun

Sneha Singh 6 years, 10 months ago

What is the question???

Puja Sahoo? 6 years, 10 months ago

???

Gungun_ Lalwani? 6 years, 10 months ago

What's it????
  • 1 answers

Sia ? 6 years, 4 months ago

Let n-1 and n be consecutive positive integers,Let P be their product
Then  {tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm n(\mathrm n-1)=\mathrm n^2-1\;.................(1)}}{/tex}
We know that any positive integers is of the form 2q or 2q + 1, where q is a positive integer
Case I: When n = 2q, then
P=n2 - n = (2q)2 - 2q = 4q2 - 2q = 2q(2q - 1)-----(2)
Case II: When n = 2q + 1, then
P=n2 - n = (2q + 1)2 - (2q + 1)
= 4q2 + 4q + 1 - 2q - 1
= 4q2 + 2q
P = 2q(2q + 1)..........(3)
From (2) and (3) we conclude that

The product of n-1 and n is divisible by 2

  • 3 answers

S.P Singh 6 years, 10 months ago

Let P(6,b-2) and Q(-2,4) is line segment.
Let A(2,-3)is Mid-point of PQ.

Using Mid-point formula:
A(2,-3)= 6-2/2, b-2+4/2
Comparing y Co-ordinate
-3=b-2+4/2
-6=b+2
b=-6-2
b=-8


<font color="blue "> value of b is -8

Rishab Jain 6 years, 10 months ago

13

Suresh73 Suri 6 years, 10 months ago

b=13
  • 4 answers

Ashwani Yadav 6 years, 10 months ago

Correct answer is cos.

Shivam Tripathi 6 years, 10 months ago

(1+sin/cos )( 1-sin),,, ,,,,,( 1 )^2 - (sin )^2/cos,,,,,,,, cos^2/cos,,,,,,,, cos

Shivam Tripathi 6 years, 10 months ago

(1/ cos+sin/ cos)( 1- sin )

Suresh73 Suri 6 years, 10 months ago

Cos^2
  • 0 answers
π2
  • 2 answers

Apurv Gautam 6 years, 10 months ago

44/7

Rishab Jain 6 years, 10 months ago

What
  • 1 answers

Madhur Dubey ??? 6 years, 10 months ago

Since , Sn=3n^2+n. .................1 Therefore Sn-1=3(n-1)^2+n-1. Or =3(n^2+1-2n)+n-1. Or =3n^2+3-6n+n-1. Or =3n^2-5n+2 ..............2 We know that ,. An=Sn-Sn-1. Or. =3n^2+n-(3n^2-5n+2) Or. =6n-2. Now,. A16=6(16)-2=96-2={94} Hence, 16th term of this A.P. is 94
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\frac{1}{2a + b + 2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} + {tex}\frac{1}{2x}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac{1}{2a + b + 2x}{/tex} - {tex}\frac{1}{2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} 
{tex}\Rightarrow{/tex}{tex}\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex} = {tex}\frac{b + 2a}{2a \times b}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex} = {tex}\frac{b + 2a}{2ab}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex} = {tex}\frac{1}{2ab}{/tex} 

{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax  = -2ab{/tex}
{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex} 

{tex}\Rightarrow{/tex} {tex}2x(2x + b) + 2a(2x + b) = 0{/tex}
{tex}\Rightarrow{/tex} (2x + b)(2x  + 2a) = 0

{tex}\Rightarrow{/tex} x = -{tex}\frac{b}{2}{/tex} or x = -a

  • 2 answers

Ashwani Yadav 6 years, 10 months ago

Shraddha Nawale well tried but your answer is wrong. The correct answer is 9.

Shraddha Nawale?? 6 years, 10 months ago

I think iys 19/2
  • 1 answers

Ashwani Yadav 6 years, 10 months ago

Here given that roots are equal so D or discriminent will 0. hence b^2-4ac=o and b^2=4ac
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question,
L.H.S. = {tex}\frac { 1 } { ( \sec \theta - \tan \theta ) } - \frac { 1 } { \cos \theta }{/tex}
{tex}= \frac { 1 } { ( \sec \theta - \tan \theta ) } \times \frac { ( \sec \theta + \tan \theta ) } { ( \sec \theta + \tan \theta ) } - \sec \theta{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) } { \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) } - \sec \theta{/tex}
= (sec{tex}\theta{/tex} + tan{tex}\theta{/tex}) - sec{tex}\theta{/tex} [{tex}\therefore{/tex} {tex}sec^2\theta - tan^2\theta = 1{/tex}]
= tan{tex}\theta{/tex}.
R.H.S. = {tex}\frac { 1 } { \cos \theta } - \frac { 1 } { ( \sec \theta + \tan \theta ) }{/tex}
{tex}= \sec \theta - \frac { 1 } { ( \sec \theta + \tan \theta ) } \times \frac { ( \sec \theta - \tan \theta ) } { ( \sec \theta - \tan \theta ) }{/tex}
= sec{tex}\theta{/tex} - (sec{tex}\theta{/tex} - tan{tex}\theta{/tex}) [{tex}\therefore{/tex}{tex} sec^2\theta - tan^2\theta = 1{/tex}]
= tan{tex}\theta{/tex}.
{tex}L.H.S. = R.H.S.{/tex}

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let n =3k
then n + 2 = 3k + 2
and n + 4 = 3k + 4
Case 1: When n=3k ,n is divisible by 3 ............(1)
n + 2 = 3k + 2
or, n + 2 is not divisible by 3
n + 4 = 3k + 4
= 3(k + 1) + 1
or, n + 4 is not divisible by 3
Case 2:When n=3k+1, n is not divisible by 3 
n + 2 = (3k + 1) + 2
=3k + 3 = 3(k + 1)
{tex} \Rightarrow{/tex} n+ 2 is clearly divisible by 3..........................(2)
n + 4 = (3k + 1) + 4
= 3k + 5
= 3(k + 1) + 2
{tex}\Rightarrow{/tex} n + 4 is not divisible by 3
Case 3:When n=3k+2,n is not divisible by 3 
n + 2 = (3k + 2) + 2
= 3k + 4
(n + 2) is not divisible by 3
x + 4 = 3k + 6 = 3(k + 2)
{tex}\Rightarrow{/tex} n + 4 is divisible by 3........................(3)
Hence, from (1),(2) and (3) it is clear that exactly one of the numbers n, n + 2, n + 4, is divisible by 3.

  • 2 answers

Rishab Jain 6 years, 10 months ago

By more practice of questions and do many workbooks

Abhinav Yadav 6 years, 10 months ago

By more and more practicing of questions.
  • 3 answers

Rishab Jain 6 years, 10 months ago

U see your maths ncert book cgapter 2 me alg se hi h

Madhur Dubey ??? 6 years, 10 months ago

Quadratic formula --. -b + √b²-4ac/2a.

Asif Alam 6 years, 10 months ago

b square - 4ac
  • 2 answers

Rishab Jain 6 years, 10 months ago

It is very easy.see your ncert book??

Honey ??? 6 years, 10 months ago

Simply tell that you want formulas of all the chapters.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App