No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aruneeraj K 6 years, 10 months ago

when x4+2x3+8x2+12x+18 divided by x2+5 Leaves remainder 2x+3 So comparing this with px+q We get p=2 & q=3
  • 1 answers

Vardhan Pandey 6 years, 10 months ago

Bhai log jaldi se batao
  • 2 answers

Anshu Rai ? 6 years, 10 months ago

Yes it can't be solved here . Sorry

Gungun_ ?? 6 years, 10 months ago

Its long so i cant solve it here...
  • 4 answers

Sneha Singh 6 years, 10 months ago

Same here question clearly likho bhn

Honey ? 6 years, 10 months ago

Apply the formula (x1+x3)-x2=x4

Puja Sahoo? 6 years, 10 months ago

Yur question is nt clear

Geetanand Yadav 6 years, 10 months ago

Isme Y Kahan hai aur vertices kuch samajh me nhi aa rha??????
  • 1 answers

Sia ? 6 years, 6 months ago

We have to find the  ratio in which  the x-axis divides the line segment joining the points (- 4, - 6) and (- 1, 7).We will also  find the coordinates of the point of division.

Let x-axis  divides the line-segment joining (- 4, - 6) and (-1, 7) at the point P in the ratio 1: k.
Now, the coordinates of point of division P,
{tex}= \frac { 1 × ( - 1 ) + k× ( - 4 ) } { k + 1 } , \frac { 1 × 7 + k × ( - 6 ) } { k + 1 }{/tex}
{tex}= \frac { - 1 - 4 k } { k + 1 } , \frac { 7 - 6 k } { k + 1 }{/tex}
Since P lies on x-axis, therefore
{tex}\frac { 7 - 6 k } { k + 1 } = 0{/tex}
or, 7 - 6k = 0 {tex}\Rightarrow k = \frac { 7 } { 6 }{/tex}
Hence, the ratio is 1:{tex}\frac 76{/tex} or 6 : 7
And the coordinates of P are {tex}\frac{-1-\frac{28}{6}}{\frac{7+6}{6}},0=\frac{-6-28}{7+6},0{/tex}

i.e {tex}\left( - \frac { 34 } { 13 } , 0 \right){/tex}.

  • 1 answers

Sia ? 6 years, 6 months ago

The diameter of well = 3 m
{tex}\therefore {/tex} The radius of well {tex}(r) = \frac{3}{2}{/tex}m and Depth of earth dug (h) = 14 m
Width of the embankment = 4 m
{tex}\therefore {/tex} The radius of the well with embankment r' = {tex}\frac{3}{2} + 4 = \frac{{11}}{2}{/tex}m
Let the height of the embankment be h'm
According to the question,
The volume of embankment = Volume of the earth dug
{tex} \Rightarrow \pi \left[ {{{(r')}^2} - {r^2}} \right]h' = \pi {r^2}h{/tex}
{tex} \Rightarrow \left[ {{{\left( {\frac{{11}}{2}} \right)}^2} - {{\left( {\frac{3}{2}} \right)}^2}} \right]h' = {\left( {\frac{3}{2}} \right)^2} \times 14{/tex}

 {tex} \Rightarrow \left[ {\frac{{121}}{4} - \frac{9}{4}} \right]h' = \frac{9}{4} \times 14{/tex}
{tex} \Rightarrow \frac{{112}}{4} \times h' = \frac{9}{4} \times 14{/tex}

 {tex} \Rightarrow h' = \frac{{9 \times 14 \times 4}}{{4 \times 112}}{/tex}
{tex} \Rightarrow h' = 1.125m{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

For conical portion, r = 2m and {tex}l{/tex} = 2.8 m. Let S1 the curved surface area of conical portion. Then,

{tex}S _ { 1 } = \pi r l = \pi \times 2 \times 2.8 \mathrm { m } ^ { 2 } = 5.6 \pi \mathrm { m } ^ { 2 }{/tex}
For cylindrical portion, we have r = 2m ,h = 2.1m
Let S2 be the curved surface area of cylindrical portion. Then
{tex}S _ { 2 } = 2 \pi r h = 2 \pi \times 2 \times 2.1 \mathrm { m } = 8.4 \pi \mathrm { m } ^ { 2 }{/tex}
Let S be the area of the canvas used. Then,
S = S1 + S{tex}( 5.6 \pi + 8.4 \pi ) \mathrm { m } ^ { 2 } = 14 \times \frac { 22 } { 7 } \mathrm { m } ^ { 2 } = 44 \mathrm { m } ^ { 2 }{/tex}
Total cost of the canvas at the rate of Rs 500 per m2 = Rs {tex}( 500 \times 44 ){/tex}= Rs 22000

  • 1 answers

Sia ? 6 years, 6 months ago


Let {tex}\angle O P Q \text { be } \theta{/tex}
{tex}\therefore \quad \angle T P Q = \left( 90 ^ { \circ } - \theta \right){/tex}
Since TP = TQ (Tangents)
{tex}\therefore \quad \angle T Q P = \left( 90 ^ { \circ } - \theta \right){/tex}
(Opposite angels of equal sides)
Now, {tex}\angle T P Q + \angle T Q P + \angle P T Q{/tex} = 180o
{tex}\Rightarrow 90 ^ { \circ } - \theta + 90 ^ { \circ } - \theta + \angle P T Q{/tex} {tex}= 180 ^ { \circ }{/tex}
{tex}\Rightarrow \quad \angle P T Q = 180 ^ { \circ } - 180 ^ { \circ } + 2 \theta{/tex} 
{tex}\Rightarrow \quad \angle P T Q = 2 \theta{/tex}
Hence {tex}\angle P T Q = 2 \angle O P Q{/tex}

  • 1 answers

Gaurav Seth 6 years, 10 months ago

We know that, the lengths of tangents drawn from an external point to a circle are equal.
∴ TP = TQ
In ΔTPQ,
TP = TQ
⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)
∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)
∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))
⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)
We know that, a tangent to a circle is perpendicular to the radius through the point of contact.
OP ⊥ PT,
∴ ∠OPT = 90º
⇒ ∠OPQ + ∠TPQ = 90º
⇒ ∠OPQ = 90º – ∠TPQ
⇒ 2∠OPQ = 2(90º – ∠TPQ) = 180º – 2 ∠TPQ ...(2)
From (1) and (2), we get
∠PTQ = 2∠OPQ

  • 2 answers

Gaurav Seth 6 years, 10 months ago

Given: 

Radius of larger circle,(OA) R = 7 cm

Diameter of smaller circle,(OD) = 7 cm

Radius of smaller  circle = 7/2 cm


Height of ΔBCA( OC) = 7 cm
Base of ΔBCA ( AB )= 14 cm


Area of ΔBCA = 1/2 × base × height

Area of ΔBCA = 1/2 × AB × OC = 1/2 × 7 × 14 = 49 cm²


Area of larger semicircle with radius (OA)7 cm = 1/2 ×π ×7²= 1/2 ×22/7 ×7×7 = 77 cm²

Area of smaller circle with radius 7/2 cm = πr²= 22/7 × 7/2 × 7/2 = 77/2 cm² 
Area of the shaded region =Area of smaller circle with radius 7/2 cm +Area of larger semicircle with radius 7 cm - Area of ΔBCA 


Area of the shaded region = 77/2 + 77 - 49= 77/2 + 28 = (77 +56) /2= 133/2
Area of the shaded region = 66.5 cm²

Rock ×Himanshu 6 years, 10 months ago

Shaded region kon sa hai
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Given ABCD is a ||gm such that its sides touch a circle with centre O.

∴ AB = CD and AB || CD,

AD = BC and AD || BC

Now, P, Q, R and S are the touching point of both the circle and the ||gm

We know that, tangents to a circle from an exterior point are equal in length.

∴ AP = AS  [Tangents from point A]  ...  (1)

 BP = BQ  [Tangents from point B] ...  (2)

 CR = CQ  [Tangents from point C] ...  (3)

 DR = DS  [Tangents from point D] ...  (4)

On adding (1), (2), (3) and (4), we get

AP + BP + CR + DR = AS + BQ + CQ + DS

⇒ (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)

⇒ AB + CD = AD + BC

⇒ AB + AB = BC + BC  [∵ ABCD is a  ||gm . ∴ AB = CD and AD = BC]

⇒ 2AB = 2BC

⇒ AB = BC

Therefore, AB = BC implies

AB = BC = CD = AD

Hence, ABCD is a rhombus.

 

In rhombus, it is not necessary that diagonals are equal. If they are equal, then rhombus is considered as a square whose diagonals are always equal. So, there isn't any use of proving that the diagonals of a rhombus are equal.

  • 3 answers

Garima Sharma 6 years, 10 months ago

When points are collinear area of triangle is 0 Then put values in X1(y2-y3) +x2(y3-y1) +x3(y1-y2), Aur solve kar lo

D? S 6 years, 10 months ago

Bhai isme triangle ka formula = 0 rakh de

Chahna Lekhi 6 years, 10 months ago

ar(ABC) = 0 So, k = 0
  • 4 answers

Honey ? 6 years, 10 months ago

Black cards are 26 in no.

Geetanand Yadav 6 years, 10 months ago

& nhi =*

Anurag Singh 6 years, 10 months ago

1/2 ans

Geetanand Yadav 6 years, 10 months ago

P(E)=26/52&1/2
  • 2 answers

Twinkle Star ( Atul )....... ?? 6 years, 10 months ago

Jayada Einstein h k??

Anurag Singh 6 years, 10 months ago

Where are you from
  • 1 answers

Abhijith Praseed 6 years, 10 months ago

(a+b)^2=a^2+2ab+b^2
  • 3 answers

Twinkle Star ( Atul )....... ?? 6 years, 10 months ago

Thm 8

Geetanand Yadav 6 years, 10 months ago

Circle or from triangles definitely ?%

Puja Kaushal 6 years, 10 months ago

Ya bt only 1 and 2
  • 5 answers

Puja Sahoo? 6 years, 10 months ago

Other number = hcf × lcm /given number.... =113×56952/904 =7119

???Roshan Kumar??? 6 years, 10 months ago

7119

Geetanand Yadav 6 years, 10 months ago

LCM*HCF=113*56592=6435576

Geetanand Yadav 6 years, 10 months ago

LCM *HCF=product of two numbers .so answer=7119

Jaya Maji 6 years, 10 months ago

7119
  • 4 answers

Garima Sharma 6 years, 10 months ago

Thank you both

Honey ? 6 years, 10 months ago

AB=BC=AC , BD=DC=BC/2,. AB ^2=BD^2+AD^2 bus issi mein AB ke jagah BC aur BD ke jagah BC/2 put kar do aur value nikal lo

Puja Sahoo? 6 years, 10 months ago

Solution kaisr bhejun........

Garima Sharma 6 years, 10 months ago

Please answer fast
  • 4 answers

Eliza ? 6 years, 10 months ago

We have to write it when the ques. is of 3 or 5 markss..?

Mishthi ? 6 years, 10 months ago

If it's not asked in the question...then don't write....if it's asked then it's compulsory to write the steps.....

Puja Sahoo? 6 years, 10 months ago

Ya its needed........

Garima Sharma 6 years, 10 months ago

No it is not important but you have to draw the correct figure
  • 2 answers

Anushka S 6 years, 10 months ago

Let 5+3√2 is rational number say p/q where q is not equal to zero and p and q is coprime. 5+3√2=p/q 3√2=p/q-5 3√2=p-5q/q √2=p-5q/3q √2is irrational and p-5q/3q is rational. Therefore our supposition is wrong. 5+3√2 is irrational

Jaya Maji 6 years, 10 months ago

Let assume √2 as a rational no. It can be wriien as a/b where a,b both r integers so a/b=5+3√2 .now a/b -5=3√2,now a-5b/b= 3√2and a-5b/3b =√2 bt it can't happen bcz a,b both r integers so r.h.s not equals to l.h.s so assumption is wrong and hence it is proved that 5+3√2 is an irrational no.
  • 0 answers
  • 1 answers

Ram Kushwah 6 years, 10 months ago

See guess papers 2019

  • 1 answers

Kalyani Pathak 6 years, 10 months ago

an=a+(n-1)d For a21 a21=a+(21-1)d a21=a+20d-------[1] Now for a7, a7=a+(7-1)d a7=a+6d---------[2] a21-(a7)=a+20d-(a+6d) 84 =a+20d-a-6d 84=14d d=84/14 d=6 Answer:The common difference of this arithmetic progression is 6.
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App